scholarly journals A Height Growth Model and Associated Growth Intercept Models for Estimating Site Index in Black Spruce (Picea mariana Mill. B.S.P.) Plantations in Northern Ontario, Canada

2011 ◽  
Vol 28 (3) ◽  
pp. 129-137
Author(s):  
Martin M. Kwiaton ◽  
Jian R. Wang ◽  
Douglas E.B. Reid

Abstract Site quality is a key component of growth and yield models because height growth rates are known to be influenced by available site resources. Accurate prediction of future growth and yield requires site quality information for both plantations and natural stands. The forest industry in northern Ontario relies on high-quality wood and fiber from black spruce (Picea mariana Mill. B.S.P.); therefore, these tools are essential to ensure sustainable forest management. Although there are site index (SI) models for natural-origin black spruce stands in northern Ontario, models for estimating site quality of young black spruce plantations have not been developed. We used stem analysis data collected from 62 plantations (>40 years of age) of pure black spruce across northern Ontario to develop height growth, SI, and variable growth intercept models. The distinct height growth patterns we observed may be attributed to early silvicultural treatments (site preparation and herbicide) in plantations allowing black spruce trees to attain breast height (1.3 m) faster than in fire-origin stands in northern Ontario. Our models can be used to estimate site quality of black spruce plantations, a key consideration for silviculture and forest management planning. We also compare our managed stand SI model to one we developed from a comparable subset of data from black spruce growing in unmanaged stands and propose a method to assign an SI with a common base age to pure upland black spruce stands regardless of origin.

2006 ◽  
Vol 36 (9) ◽  
pp. 2179-2188 ◽  
Author(s):  
Jin-ping Guo ◽  
Jian R Wang

Accurate estimates of forest productivity are required for sustainable forest management. Sixty-five jack pine (Pinus banksiana Lamb.) plantations (<50 years of age) were sampled to develop height growth and variable growth intercept (GI) models for jack pine plantations in northern Ontario, Canada. Based on the residual plots and model-fitting statistics, these models can be recommended for estimating site index (SI) of young (<40 years) jack pine plantations. To compare SI of plantations with that of natural stands, we used stem-analysis data from 383 plots of natural jack pine stands (aged 50–157 years) from the same geographic region to develop the GI models for natural stands. Also, polymorphic SI curves were developed for young (<40 years) plantations in northern Ontario. These SI curves were different from those for natural stands. Jack pine plantations had a higher site quality (SI) than did the original natural stands on the similar sites. The SI curves developed from natural stands should not be used to predict growth and yield of jack pine plantations before they are calibrated for jack pine plantations. These GI models will be used to estimate SI for silviculture and forest-management planning.


1988 ◽  
Vol 5 (2) ◽  
pp. 91-93 ◽  
Author(s):  
Timothy R. Bottenfield ◽  
David D. Reed

Abstract Five growth intercept measurements were correlated with site index of red pine plantations in the northern Lakes States. The growth intercept variables were obtained by direct field measurement or indirectly through interpolation of stem analysis data. Growth intercepts represented both time (age in years) and distance (height in feet) measurements. Growth intercepts representing time and the age at breast height are not recommended for use in young red pine plantations. The amount of height growth in the first five annual whorls above 5 and 8 ft were good predictors of site index. North. J. Appl. For. 5:91-93, June 1988.


1978 ◽  
Vol 54 (6) ◽  
pp. 296-297 ◽  
Author(s):  
Douglas A. Mead

Height growth of eastern larch (Larix laricina (Du Roi) K. Koch) and black spruce (Picea mariana (Mill.) B.S.P.) was determined using standard stem analysis methods on trees from two sites in northwestern Ontario. The data were obtained from mixed larch-spruce stands which were relatively undisturbed. The larch exhibited substantially better height growth than the spruce through age 65.


1990 ◽  
Vol 7 (1) ◽  
pp. 27-30 ◽  
Author(s):  
James H. Brown ◽  
Charles A. Duncan

Abstract Growth intercept (GI) techniques were evaluated for estimating site quality in red pine stands planted on old-field sites in the unglaciated Western and Central Allegheny Plateau regions of Ohio. Correlations between height growth of trees below breast height (BH) and height growth above BH were not statistically significant. Site index estimates were made using age at BH and height from BH to the growing tip. Three-year and 5-year growth beginning three internodes above the BH annual increment and 10-year growth beginning one internode above BH were more significantly correlated with height than were intercepts beginning at BH. In equations developed for predicting site index, 3-, 5-, and 10-year intercepts in combination with age accounted for 64 to 80% of the variation in tree heights. Combining thickness of the A soil horizon with GI and age statistically increased the variation accounted for in the 3- and 5-year GI equations; however, for field use, the improvement in accuracy was not sufficient to justify making the additional soil measurement. North. J. Appl. For. 7(1):27-30, March 1990.


2001 ◽  
Vol 77 (1) ◽  
pp. 141-150 ◽  
Author(s):  
Willard H. Carmean ◽  
G. Hazenberg ◽  
G. P. Niznowski

Stem-analysis data from dominant and codominant trees were collected from 383 plots located in fully stocked, even-aged, undisturbed mature jack pine stands. Separate site index curves were independently formulated for four regions of northern Ontario using the Newnham constrained nonlinear regression model; these formulations were used for comparing regional site index curves at three levels of site index (10 m, 15 m and 20 m).Comparisons showed that no significant differences existed between the four regional curves as well as with previously published site index curves for the North Central Region. Each of the four regions had similar polymorphic height-growth patterns; therefore, data for the four regions were combined and a single formulation was used to develop a polymorphic set of site index curves for all of northern Ontario. We found that poor sites in each region had almost linear height growth up to 100 years breast-height age, but for each region height growth became more curvilinear with increasing site index. The recommended site index curves for northern Ontario are based on a formulation using only data from plots 100 years and less but this formulation was not significantly different from a formulation using only data from plots 80 years and less, or a formulation that included all data from plots older than 100 years breast-height age.Comparisons were made between our northern Ontario curves and other jack pine site index curves for Ontario as well as curves for other areas of Canada and the United States. These comparisons generally showed considerable older age differences. Reasons for these differences are uncertain but could be due to differences in the amount and kind of data used for these other curves, could be due to differences in analytical methods, or could be due to regional differences in climate, soil and topography. Key words: site quality evaluation, polymorphic height growth, regional site index curves, site index prediction equations, comparisons among site index curves.


1964 ◽  
Vol 40 (2) ◽  
pp. 169-174 ◽  
Author(s):  
J. D. Gagnon

The concentration of nitrogen in current year lateral needles of 122 mature dominant and codominant black spruce trees (Picea mariana Mill.) growing on different site qualities has been studied. Analyses carried out on needles collected at the end of the growing season and within two feet of both the top and base of the crown indicated that samples obtained from either position on the crown can be related to site index or site quality. It seems, therefore, that the concentration of nitrogen in needles from the lower branches is as good a criterion of growth or productivity as that in the needles from the upper branches.


2000 ◽  
Vol 30 (1) ◽  
pp. 59-66 ◽  
Author(s):  
David Pothier

Regeneration of first-cut strips in a two-cut system of strip clear-cutting was compared to that of large clear-cutting in four different areas representative of the black spruce (Picea mariana (Mill.) BSP) stands of the boreal forest of Quebec. Seedlings were more evenly distributed in clearcut strips than in large clearcuts. Differences of about 10 000 black spruce seedlings per hectare and 20% of stocking were observed in favour of clearcut strips compared to large clearcuts. Black spruce stocking was about 14% larger on lowland than on upland sites but height growth was better on upland sites. A regeneration problem similar to that of large clearcuts was observed when the second strips were cut. One year after cutting these second strips, winter harvesting resulted in a 23% gain in black spruce stocking as compared to summer harvesting. Even if black spruce stocking marginally increased during the years following winter harvesting, the height advantage of the preserved advance growth justifies the application of this harvesting method. The strip clear-cutting system effectively improved the stocking of former black spruce stands but if the stocking level of advance growth is adequate, careful harvesting to preserve advance regeneration should be the preferred method since it would be more cost-efficient.


1995 ◽  
Vol 25 (4) ◽  
pp. 536-544 ◽  
Author(s):  
David Pothier ◽  
René Doucet ◽  
Jocelyn Boily

The advance regeneration often present following clear-cutting in black spruce (Piceamariana (Mill.) B.S.P.) stands is generally composed of individuals of various heights. This initial height difference is hypothesized to affect the yield of the future stand. Height of the advance regeneration at time of release was determined on several black spruce trees within 33 stands distributed across the boreal forest of the province of Quebec, Canada. From these data, a regeneration structure index was developed and used to explain a part of the variation in subsequent stand yield. Dominant trees of stands developing for 38 to 65 years since clear-cutting generally originated from the tallest advance regeneration at time of release. Stands with the tallest regeneration at time of release produced the largest yields for a given site quality and number of years since harvesting. A 3-m increase in advance-regeneration height resulted in a similar yield gain as a 3-m increase in site index. Site indices calculated from age-height relationships of dominant trees originating from tall advance regeneration were less than those calculated from trees that have undergone a relatively short period of suppression. These results suggest that traditional management tools developed for fire-origin black spruce stands, i.e., stands mainly composed of seed-origin trees established after perturbation, should be adjusted for clearcut-origin stands that largely develop from advance regeneration.


2002 ◽  
Vol 78 (2) ◽  
pp. 306-313 ◽  
Author(s):  
Gordon D Nigh ◽  
Pavel V Krestov ◽  
Karel Klinka

Black spruce (Picea mariana (Mill.) B.S.P.) is a boreal species that occurs extensively across the northern half of British Columbia. Forest managers require better growth and yield information for black spruce given the anticipated increase in demand for wood in the northern part of the province. The purpose of this study was to develop height-age models for black spruce. Ninety-one stem analysis plots were established in the BWBS and SBS biogeoclimatic zones. Three black spruce site trees from each plot were stem analyzed and the data were converted into height-age data. A conditioned log-logistic function was fit to the data. Indicator variables were used to test for differences in height growth between the sampled subzones. Although the warm subzones had different height growth patterns than the cool subzones, there was general agreement among the height-age models from British Columbia, Alberta, and New Brunswick up to about age 100. Key words: biogeoclimatic zones, height-age models, logistic function, site index, stem analysis


1993 ◽  
Vol 23 (7) ◽  
pp. 1396-1401 ◽  
Author(s):  
Jocelyn Boily ◽  
René Doucet

Annual height growth of natural regeneration was measured in 18- to 21-year-old clear-cuts of black spruce stands growing on sites of contrasted drainage, in two ecological regions of the Haute-Gatineau-et-Cabonga management unit in western Quebec. Most regeneration was established by layering and was growing slowly on all sites at time of release by clear-cutting of the main stand. Height growth rates increased rapidly thereafter on mesic sites: about 7 to 8 years after release, it reached 15 cm or more per year, and 32 to 45 cm per year 20 years after harvest. On moist sites, growth rates of 15 cm per year were attained only 10 to 15 years after release, and did not exceed 25 cm at age 20. These results show that growth of black spruce natural regeneration is controlled more by site quality than by the mechanism responsible for reproduction.


Sign in / Sign up

Export Citation Format

Share Document