Transplanting Stress in Bareroot Conifer Seedlings: Its Development and Progression to Establishment

1989 ◽  
Vol 6 (3) ◽  
pp. 99-107 ◽  
Author(s):  
W. J. Rietveld

Abstract Transplanting stress is: (1) a temporary condition of distress from injuries, depletion, and impaired functions; (2) a process of recovery; and (3) a period of adjustment to a new environment. Some transplanting stress is unavoidable, even with good stock in a favorable environment. The degree and duration of stress depend on the interactions of seedling performance potential and the site environment. Renewal of root-to-soil contact is important for resumption of adequate water and nutrient uptake. Root growth is sensitive to soil temperature and plant moisture stress. If reserve carbohydrates are exhausted before they are replenished from photosynthesis, the seedlings may die. Preplant handling and postplant drought aggravate transplanting stress. Stress can be minimized by planting stock with high stress resistance, preserving seedling performance potential, preparing a favorable planting site environment, and planting the seedlings properly. North. J. Appl. For. 6:99-107, September 1989




2005 ◽  
Vol 25 (1) ◽  
pp. 115-122 ◽  
Author(s):  
M. Lahti ◽  
P. J. Aphalo ◽  
L. Finer ◽  
A. Ryyppo ◽  
T. Lehto ◽  
...  


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 97
Author(s):  
Mazhar H. Tunio ◽  
Jianmin Gao ◽  
Imran A. Lakhiar ◽  
Kashif A. Solangi ◽  
Waqar A. Qureshi ◽  
...  

The atomized nutrient solution droplet sizes and spraying intervals can impact the chemical properties of the nutrient solution, biomass yield, root-to-shoot ratio and nutrient uptake of aeroponically cultivated plants. In this study, four different nozzles having droplet sizes N1 = 11.24, N2 = 26.35, N3 = 17.38 and N4 = 4.89 µm were selected and misted at three nutrient solution spraying intervals of 30, 45 and 60 min, with a 5 min spraying time. The measured parameters were power of hydrogen (pH) and electrical conductivity (EC) values of the nutrient solution, shoot and root growth, ratio of roots to shoots (fresh and dry), biomass yield and nutrient uptake. The results indicated that the N1 presented significantly lower changes in chemical properties than those of N2, N3 and N4, resulting in stable lateral root growth and increased biomass yield. Also, the root-to-shoot ratio significantly increased with increasing spraying interval using N1 and N4 nozzles. The N1 nozzle also revealed a significant effect on the phosphorous, potassium and magnesium uptake by the plants misted at proposed nutrient solution spraying intervals. However, the ultrasonic nozzle showed a nonsignificant effect on all measured parameters with respect to spraying intervals. In the last, this research experiment validates the applicability of air-assisted nozzle (N1) misting at a 30-min spraying interval and 5 min of spraying time for the cultivation of butter-head lettuce in aeroponic systems.



1988 ◽  
Vol 111 (2) ◽  
pp. 267-269 ◽  
Author(s):  
S. A. Barber ◽  
A. D. Mackay ◽  
R. O. Kuchenbuch ◽  
P. B. Barraclough


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 597
Author(s):  
Jacob A. Reely ◽  
Andrew S. Nelson

Environmental conditions and seedling quality interact to produce complex patterns of seedling survival and growth. Root growth potential (RGP) is one metric of seedling quality that can be rapidly measured prior to planting, but the correlation of RGP and seedling performance is not consistent across studies. Site factors including microsite objects that cast shade and competing vegetation can also influence seedling performance. We examined the effects of RGP, presence/absence of a microsite object, and competition cover on the survival and growth of three native conifers to the Inland Northwest, USA, over 5 years. We found that RGP had no effect on the survival or growth of western larch (Larix occidentalis), Douglas fir (Pseudotsuga menziesii var. glauca), and grand fir (Abies grandis) at a mesic north aspect site and a xeric south aspect site. Comparatively, the presence of a microsite increased the odds of survival by 37% for western larch and 158% for grand fir, while the absence of forb cover increased the odds of survival of western larch by 72% and of grand fir by 26%. Douglas fir was less sensitive to microsites and competition. The strong effects of neighborhood conditions around seedlings help inform silvicultural practices to enhance the establishment of western larch and grand fir, including planting seedlings near shading objects and competition control, while these practices may not be as important for Douglas fir.



1977 ◽  
Vol 69 (6) ◽  
pp. 940-943 ◽  
Author(s):  
J. A. Adepetu ◽  
L. K. Akapa


2017 ◽  
Vol 08 (11) ◽  
pp. 1263-1277 ◽  
Author(s):  
Qi Du ◽  
Xinhua Zhao ◽  
Chunji Jiang ◽  
Xiaoguang Wang ◽  
Yi Han ◽  
...  


2020 ◽  
Author(s):  
Yanan Song ◽  
Hongli Cui ◽  
Ying Shi ◽  
Jinai Xue ◽  
Chunli Ji ◽  
...  

Abstract Background: WRKY transcription factors are a superfamily of regulators involved in diverse biological processes and stress responses in plants. However, knowledge is limited for WRKY family in camelina (Camelina sativa), an important Brassicaceae oil crop with strong tolerance against various stresses. Here, genome-wide characterization of WRKY proteins is performed to examine their gene-structures, phylogenetics, expressions, conserved motif organizations, and functional annotation to identify candidate WRKYs mediating regulation of stress resistance in camelina.Results: Total of 242 CsWRKY proteins encoded by 224 gene loci distributed uneven on chromosomes were identified, and classified into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. 15 CsWRKY gene loci generated 33 spliced variants. Orthologous WRKY gene pairs were identified, with 173 pairs in C. sativa and Arabidopsis genomes as well as 282 pairs for C. sativa and B. napus, respectively. 137 segmental duplication events were observed but no tandem duplication in camelina genome. Ten major conserved motifs were examined, with WRKYGQK as the most conserved and several variants existed in many CsWRKYs. Expression analysis revealed that half more CsWRKY genes were expressed constitutively, and a set of them had a tissue-specific expression. Notably, 11 CsWRKY genes exhibited significantly expression changes in plant seedlings under cold, salt, and drought stress, respectively, having preferentially inducible expression pattern in response to the stress.Conclusions: The present described a detail analysis of CsWRKY gen family and their expression profiled in twelve tissues and under several stress conditions. Segmental duplication is the major force for large expansion of this gene family, and a strong purifying pressure happened for CsWRKY proteins evolutionally. CsWRKY proteins play important roles for plant development, with differential functions in different tissues. Exceptionally, eleven CsWRKYs, particularly five alternative spliced isoforms were found to be the key players possibly in mediating plant response to various stresses. Overall, our results provide a foundation for understanding roles of CsWRKYs and the precise mechanism through which CsWRKYs regulate high stress resistance to stress as well as development of stress tolerance cultivars for Cruciferae crops.



Sign in / Sign up

Export Citation Format

Share Document