scholarly journals 665. Clinical and Financial Impact of Next Generation Sequencing (NGS) in addition to Conventional Microbiology Testing in our Urban Referral Health Center

2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S434-S435
Author(s):  
Vikram Saini ◽  
Tariq Jaber ◽  
James D Como ◽  
Rasha Abdulmassih ◽  
Zaw Min ◽  
...  

Abstract Background Clinical microbiology traditionally relies on culture methodology and serological testing, that have inherent limitations. Newer diagnostic techniques such as Next Generation Sequencing (NGS) have shown promise to improve microbial identification. In select scenarios, we send clinical specimens to reference laboratories for NGS testing in addition to current standard of care (SOC) diagnostics. We wanted to determine how this diagnostic approach has impacted patient care. We also wanted to review the financial burden through cost-benefit analysis for these ‘send-out’ tests. Methods We performed a retrospective chart review of all cases over a 3-year period in which NGS was submitted. Data, including demographics, comorbidities, antimicrobial use, and diagnosis (by SOC and NGS) were gathered. We delineated how often there was concordance or discordance between SOC and NGS. We also obtained information on financial cost (direct and indirect) and turnaround time (TAT) for NGS results. Results A total of 33 clinical specimens from 25 patients were sent for NGS. The majority of specimens comprised joint tissue/fluid, organ tissue and CSF. Concordance occurred between SOC and NGS testing in 75.8% (25/33) of samples; of those, 88% excluded infection. NGS identified a pathogen in 20% (5/25) patients in which concomitant SOC testing was negative. A subsequent change in antimicrobial management occurred in 16% (4/25) of patients. The mean TAT was 14 days and average cost per specimen was &821.52 (range: &573-&1590). Table 1. Pathogens identified by NGS with negative traditional microbiological test results Figure 1. Distribution of specimen site (in %) sent for NGS Conclusion NGS can provide additional diagnostic sensitivity in infectious diseases, which at our institution identified a new pathogen in 20% and a resultant treatment change in 16% of our patients. This testing may also allow physicians to reaffirm the absence of an infection diagnosis. A larger NGS testing population may reveal more significant benefits. While the attributable cost of NGS was substantial, it should be measured against the costs of administration of unnecessary antibiotics, inaccurate diagnosis, and adverse patient outcomes that may result from SOC testing alone. Considering its financial cost and extended TAT, in-house NGS testing may be warranted to facilitate a higher volume of testing. Disclosures All Authors: No reported disclosures

Author(s):  
William F Wright ◽  
Patricia J Simner ◽  
Karen C Carroll ◽  
Paul G Auwaerter

Abstract Even well into the 21st century, infectious diseases still account for most causes of fever of unknown origin (FUO). Advances in molecular technologies, including broad-range PCR of the 16S rRNA gene followed by Sanger sequencing, multiplex PCR assays, and more recently, next-generation sequencing (NGS) applications, have transitioned from research methods to more commonplace in some clinical microbiology laboratories. They have the potential to supplant traditional microbial identification methods and antimicrobial susceptibility testing. Despite the remaining challenges with these technologies, publications in the past decade justify excitement about the potential to transform FUO investigations. We discuss available evidence using these molecular methods for FUO evaluations, including potential cost-benefits and future directions.


Author(s):  
Altuğ Koç ◽  
Elçin Bora ◽  
Tayfun Cinleti ◽  
Gizem Yıldız ◽  
Meral Torun Bayram ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Pelin Telkoparan-Akillilar ◽  
Dilek Cevik

Background: Numerous sequencing techniques have been progressed since the 1960s with the rapid development of molecular biology studies focusing on DNA and RNA. Methods: a great number of articles, book chapters, websites are reviewed, and the studies covering NGS history, technology and applications to cancer therapy are included in the present article. Results: High throughput next-generation sequencing (NGS) technologies offer many advantages over classical Sanger sequencing with decreasing cost per base and increasing sequencing efficiency. NGS technologies are combined with bioinformatics software to sequence genomes to be used in diagnostics, transcriptomics, epidemiologic and clinical trials in biomedical sciences. The NGS technology has also been successfully used in drug discovery for the treatment of different cancer types. Conclusion: This review focuses on current and potential applications of NGS in various stages of drug discovery process, from target identification through to personalized medicine.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Dario de Biase ◽  
Matteo Fassan ◽  
Umberto Malapelle

Next-Generation Sequencing (NGS) allows for the sequencing of multiple genes at a very high depth of coverage [...]


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052096777
Author(s):  
Peisong Chen ◽  
Xuegao Yu ◽  
Hao Huang ◽  
Wentao Zeng ◽  
Xiaohong He ◽  
...  

Introduction To evaluate a next-generation sequencing (NGS) workflow in the screening and diagnosis of thalassemia. Methods In this prospective study, blood samples were obtained from people undergoing genetic screening for thalassemia at our centre in Guangzhou, China. Genomic DNA was polymerase chain reaction (PCR)-amplified and sequenced using the Ion Torrent system and results compared with traditional genetic analyses. Results Of the 359 subjects, 148 (41%) were confirmed to have thalassemia. Variant detection identified 35 different types including the most common. Identification of the mutational sites by NGS were consistent with those identified by Sanger sequencing and Gap-PCR. The sensitivity and specificities of the Ion Torrent NGS were 100%. In a separate test of 16 samples, results were consistent when repeated ten times. Conclusion Our NGS workflow based on the Ion Torrent sequencer was successful in the detection of large deletions and non-deletional defects in thalassemia with high accuracy and repeatability.


Sign in / Sign up

Export Citation Format

Share Document