scholarly journals 1723. Human Serum Albumin Regulates the Growth of Candida auris in vitro

2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S631-S632
Author(s):  
Jun Sakai

Abstract Background Candida auris is commonly detected in human ear secretions. However, C. auris occasionally causes bloodstream infections even in immunocompetent patients resulting in poor prognosis. It was speculated that C. auris growth within the blood might be regulated by proteins in the bloodstream. Thus, in this study, the potential role of blood proteins in the regulation of C. auris growth was investigated. Methods Five Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis) were incubated overnight. Colony suspensions for each species were prepared and adjusted to OD 1.0 at absorbance 0.1. Then, human serum albumin (HSA) and bovine serum albumin (BSA) were diluted (2.5 g/dL–0.002 g/dL) and mixed with the suspensions. Mixed samples were adjusted to 100 μL and incubated on MHA plates at 35°C for 2 days. Then, 50 μL of the combined sample was extracted and streaked onto Yeast extract-Peptone-Dextrose (YPD) agar. The remaining 50 μL sample was analyzed using an XTT assay. Further testing was then conducted on the effects of a specific blood protein albumin on Candida. Thereby, C. albicans and C. auris were cultured following the procedure above and stained with Annexin V and PI. Results The growth of C. auris mixed with a high albumin concentration (2.5~0.15 g/dL) was regulated compared with that of other Candida species (P < 0.01) (Figures 1 and 2); however, the growth of C. auris mixed with a lower albumin concentration was similar to that of other species. The wash-out study showed that C. auris growth and survival in the high albumin concentration was not different than that of other species. Conclusion HSA and BSA regulated C. auris growth which led to increased necrosis of C. auris. Conversely, growth of the other Candida species was not regulated. Therefore, albumin might be involved in the growth and necrosis of C. auris. As the highest concentration at which albumin regulated C. auris growth was similar to that found in human serum, it is possible that serum albumin might help prevent C. auris from entering the bloodstream via the ear or skin. Disclosures All authors: No reported disclosures.

2020 ◽  
Vol 21 (13) ◽  
pp. 4673 ◽  
Author(s):  
Xiaomin Yang ◽  
Marta Bolsa-Ferruz ◽  
Laurent Marichal ◽  
Erika Porcel ◽  
Daniela Salado-Leza ◽  
...  

The gadolinium-based nanoagent named AGuIX® is a unique radiosensitizer and contrast agent which improves the performance of radiotherapy and medical imaging. Currently tested in clinical trials, AGuIX® is administrated to patients via intravenous injection. The presence of nanoparticles in the blood stream may induce harmful effects due to undesired interactions with blood components. Thus, there is an emerging need to understand the impact of these nanoagents when meeting blood proteins. In this work, the influence of nanoagents on the structure and stability of the most abundant blood protein, human serum albumin, is presented. Synchrotron radiation circular dichroism showed that AGuIX® does not bind to the protein, even at the high ratio of 45 nanoparticles per protein at 3 mg/L. However, it increases the stability of the albumin. Isothermal thermodynamic calorimetry and fluorescence emission spectroscopy demonstrated that the effect is due to preferential hydration processes. Thus, this study confirms that intravenous injection of AGuIX® presents limited risks of perturbing the blood stream. In a wider view, the methodology developed in this work may be applied to rapidly evaluate the impact and risk of other nano-products that could come into contact with the bloodstream.


2016 ◽  
Vol 48 (6) ◽  
Author(s):  
Dmitry N. Artemyev ◽  
Valery P. Zakharov ◽  
Igor L. Davydkin ◽  
Julia A. Khristoforova ◽  
Anastasia A. Lykina ◽  
...  

2015 ◽  
Author(s):  
Yi-Feng Shi ◽  
Min Li ◽  
Jia-Di Zhang ◽  
Lei Bian

Human serum albumin (HSA) is the most abundant protein in blood and has a 19-day in vivo half-life, the longest human blood protein. HSA has also been extensively studied as a drug carrier in a wide variety of clinical applications. HSA-binding, compared with HSA-fusion, is promising strategy for extending the plasma half-life of protein therapeutics. The construction of albumin-binding drugs requires assessment of a large enough quantity of HSA-binding peptide candidates for conjugation with therapeutic proteins. Here, we report a back-of-the-envelope assessment method to facilitate phage display selection of HSA-binding peptides. With an experimentally determined number of phage titers, we can calculate the specificity ratios and the recovery yields. The recovery yield is calculated using the titers of eluted phage divided by the titers of input phage. The specificity ratio is calculated using the titer of eluted phage from a target-coated plate divided by the titer of eluted phage from a blank-control plate. These parameters are defined as quantitative criteria for panning and characterization of binding phage clones. Consequently, this approach may enable more rapid and low-cost phage display screening of HSA-binding peptides, which could be used as candidates of HSA binders for conjugation with therapeutic proteins.


2019 ◽  
Vol 44 (4) ◽  
pp. 524-529 ◽  
Author(s):  
Sibel Korunur ◽  
Bilgin Zengin ◽  
Ali Yilmaz

Abstract Background Human serum albumin (HSA) is often selected as a subject of any study because albumin is the most abundant protein in human blood plasma. NMR is recognized as a valuable method to determine the structure of proteins-ligand and protein-drug complexes. Objective – Aim of the study In this study, protein drug interactions were investigated using 5-Fluorouracil anti-cancer drug and human serum albumin protein. Materials and methods In this context 400 MHz NMR spectrometry was used and NMR relaxation rates in drug-albumin complex were investigated with respect to increase albumin concentration and increase in 5-Fluorouracil (5-FU)-albumin solution temperature. Results The results of this study indicated that 5-FU had a weak association with albumin, and it easily dissociated from the protein to which it was attached. Conclusion The obtained results also gave us useful information about molecular dynamics of drug-albumin interactions.


2015 ◽  
Author(s):  
Yi-Feng Shi ◽  
Min Li ◽  
Jia-Di Zhang ◽  
Lei Bian

Human serum albumin (HSA) is the most abundant protein in blood and has a 19-day in vivo half-life, the longest human blood protein. HSA has also been extensively studied as a drug carrier in a wide variety of clinical applications. HSA-binding, compared with HSA-fusion, is promising strategy for extending the plasma half-life of protein therapeutics. The construction of albumin-binding drugs requires assessment of a large enough quantity of HSA-binding peptide candidates for conjugation with therapeutic proteins. Here, we report a back-of-the-envelope assessment method to facilitate phage display selection of HSA-binding peptides. With an experimentally determined number of phage titers, we can calculate the specificity ratios and the recovery yields. The recovery yield is calculated using the titers of eluted phage divided by the titers of input phage. The specificity ratio is calculated using the titer of eluted phage from a target-coated plate divided by the titer of eluted phage from a blank-control plate. These parameters are defined as quantitative criteria for panning and characterization of binding phage clones. Consequently, this approach may enable more rapid and low-cost phage display screening of HSA-binding peptides, which could be used as candidates of HSA binders for conjugation with therapeutic proteins.


2018 ◽  
Vol 37 (9) ◽  
pp. 959-971
Author(s):  
S Hadichegeni ◽  
B Goliaei ◽  
M Taghizadeh ◽  
S Davoodmanesh ◽  
F Taghavi ◽  
...  

Human serum albumin (HSA) is a soluble blood protein which binds to small molecules (such as drugs and toxins) and transfers them within the blood circulation. In this research, the interaction of diazinon, as a toxic organophosphate, with HSA was investigated. Various biophysical methods such as fluorescence, ultraviolet–visible (UV-vis), Fourier transform infrared spectroscopy, and molecular docking were utilized to characterize the binding properties of diazinon to HSA under physiological-like condition. The UV-vis spectroscopy showed that the absorption increased and the fluorescence intensity of HSA decreased regularly with regard to the gradual increases of the concentrations of diazinon. Due to the binding constant of ( ka = 3.367 × 10+4 M−1), the α-helix structure for the first day and 35 days of incubation were obtained 66.09–55.4% and 59.99–46.48%, respectively, and their amounts in other secondary structures (β-sheet, β-anti, and random (r) coils) were increased. The molecular docking revealed a good binding site in HSA (Trp-214) for diazinon which was related to the considerable alterations in HSA secondary and tertiary structures. There is a close relationship between the secondary structure of protein and its biological activity and after 35 days of incubation, the high toxic concentrations of diazinon can make HSA to be partially unfolded and lose its structure.


2021 ◽  
Author(s):  
Jason K Iles ◽  
Raminta Zmuidinaite ◽  
Christoph Saddee ◽  
Anna Gardiner ◽  
Jonathan Lacy ◽  
...  

Since the immune response to SARS-CoV2 infection requires antibody recognition of the Spike protein, we used MagMix, a semi-automated magnetic rack to reproducibly isolate patient plasma proteins bound to a pre-fusion stabilised Spike and nucleocapsid proteins conjugated to magnetic beads. Once eluted, MALDI-ToF mass spectrometry identified a range of immunoglobulins, but also in Spike protein magnetic beads we found a high affinity for human serum albumin. Careful mass comparison revealed a preferential capture of AGE glycated human serum albumin by the pre-fusion Spike protein. The ability of bacteria and viruses to surround themselves with serum proteins is a recognised process of immune evasion. A lower serum albumin concentration is a reported feature of COVID-19 patients with severe symptoms and high probability of death. This binding preference of the Spike protein for AGE glycated serum albumin may contribute to immune evasion and influence the severity & pathology of SARS-COV2 towards acute respiratory distress. Thus contributing to the symptom severity bias and mortality risk for the elderly and those with (pre)diabetic and atherosclerotic/metabolic diseases who contract SARS-CoV2 infections.


Sign in / Sign up

Export Citation Format

Share Document