scholarly journals A Connectomic Atlas of the Human Cerebrum—Chapter 8: The Posterior Cingulate Cortex, Medial Parietal Lobe, and Parieto-Occipital Sulcus

2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S350-S371 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Andrew K Conner ◽  
Chad A Glenn ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 8, we specifically address regions relevant to the posterior cingulate cortex, medial parietal lobe, and the parieto-occipital sulcus.

2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S295-S349 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Andrew K Conner ◽  
Chad A Glenn ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 7, we specifically address regions relevant to the lateral parietal lobe.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S372-S406 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Jordan Stafford ◽  
Andrew K Conner ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we seek to show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 9, we specifically address regions relevant to the occipital lobe and the visual system.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S122-S174 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Jordan Stafford ◽  
Andrew K Conner ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 4, we specifically address regions relevant to the medial frontal lobe, anterior cingulate gyrus, and orbitofrontal cortex.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S245-S294 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Camille K Milton ◽  
Andrew K Conner ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 6, we specifically address regions relevant to the temporal lobe.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S175-S244 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
Andrew K Conner ◽  
Chad A Glenn ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 5, we specifically address regions relevant to the insula and opercular cortex.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S75-S121 ◽  
Author(s):  
Cordell M Baker ◽  
Joshua D Burks ◽  
Robert G Briggs ◽  
John R Sheets ◽  
Andrew K Conner ◽  
...  

ABSTRACT In this supplement, we build on work previously published under the Human Connectome Project. Specifically, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In part 3, we specifically address regions relevant to the sensorimotor cortices.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Min Deng ◽  
Xing Zhang ◽  
Xiaoyan Bi ◽  
Chunhai Gao

Abstract Background Attachment theory demonstrates that early attachment experience shapes internal working models with mental representations of self and close relationships, which affects personality traits and interpersonal relationships in adulthood. Although research has focused on brain structural and functional underpinnings to disentangle attachment styles in healthy individuals, little is known about the spontaneous brain activity associated with self-reported attachment anxiety and avoidance during the resting state. Methods One hundred and nineteen individuals participated in the study, completing the Experience in Close Relationship scale immediately after an 8-min fMRI scanning. We used the resting-state functional magnetic resonance imaging (rs-fMRI) signal of the amplitude of low-frequency fluctuation and resting-state functional connectivity to identify attachment-related regions and networks. Results Consequently, attachment anxiety is closely associated with the amplitude of low-frequency fluctuations in the right posterior cingulate cortex, over-estimating emotional intensity and exaggerating outcomes. Moreover, the functional connectivity between the posterior cingulate cortex and fusiform gyrus increases detection ability for potential threat or separation information, facilitating behavior motivation. The attachment avoidance is positively correlated with the amplitude of low-frequency fluctuation in the bilateral lingual gyrus and right postcentral and negatively correlated with the bilateral orbital frontal cortex and inferior temporal gyrus. Functional connection with attachment avoidance contains critical nodes in the medial temporal lobe memory system, frontal-parietal network, social cognition, and default mode network necessary to deactivate the attachment system and inhibit attachment-related behavior. Conclusion and implications These findings clarify the amplitude of low-frequency fluctuation and resting-state functional connectivity neural signature of attachment style, associated with attachment strategies in attachment anxiety and attachment avoidance individuals. These findings may improve our understanding of the pathophysiology of the attachment-related disorder.


2018 ◽  
Vol 15 (suppl_1) ◽  
pp. S444-S449 ◽  
Author(s):  
Robert G Briggs ◽  
Andrew K Conner ◽  
Meherzad Rahimi ◽  
Goksel Sali ◽  
Cordell M Baker ◽  
...  

ABSTRACT In this supplement, we show a comprehensive anatomic atlas of the human cerebrum demonstrating all 180 distinct regions comprising the cerebral cortex. The location, functional connectivity, and structural connectivity of these regions are outlined, and where possible a discussion is included of the functional significance of these areas. In this chapter, we specifically address the regions integrating to form the frontal aslant tract.


Sign in / Sign up

Export Citation Format

Share Document