Stroh Finite Element for Two-Dimensional Linear Anisotropic Elastic Solids

2000 ◽  
Vol 68 (3) ◽  
pp. 468-475
Author(s):  
Chyanbin Hwu ◽  
J. Y. Wu ◽  
C. W. Fan ◽  
M. C. Hsieh

A general solution satisfying the strain-displacement relation, the stress-strain laws and the equilibrium conditions has been obtained in Stroh formalism for the generalized two-dimensional anisotropic elasticity. The general solution contains three arbitrary complex functions which are the basis of the whole field stresses and deformations. By selecting these arbitrary functions to be linear or quadratic, and following the direct finite element formulation, a new finite element satisfying both the compatibility and equilibrium within each element is developed in this paper. A computer windows program is then coded by using the FORTRAN and Visual Basic languages. Two numerical examples are shown to illustrate the performance of this newly developed finite element. One is the uniform stress field problem, the other is the stress concentration problem.

Author(s):  
T. T. C. Ting

In this chapter we study Stroh's sextic formalism for two-dimensional deformations of an anisotropic elastic body. The Stroh formalism can be traced to the work of Eshelby, Read, and Shockley (1953). We therefore present the latter first. Not all results presented in this chapter are due to Stroh (1958, 1962). Nevertheless we name the sextic formalism after Stroh because he laid the foundations for researchers who followed him. The derivation of Stroh's formalism is rather simple and straightforward. The general solution resembles that obtained by the Lekhnitskii formalism. However, the resemblance between the two formalisms stops there. As we will see in the rest of the book, the Stroh formalism is indeed mathematically elegant and technically powerful in solving two-dimensional anisotropic elasticity problems. The possibility of extending the formalism to three-dimensional deformations is explored in Chapter 15.


Author(s):  
T. T. C. Ting

There appears to be very little study, if any, on the extension of Stroh's formalism to three-dimensional deformations of anisotropic elastic materials. In most three-dimensional problems the analyses employ approaches that are remotely related to Stroh's two-dimensional formalism. This is not unexpected, since this has been the situation between two-dimensional and three-dimensional isotropic elasticity. However it needs not be the case for three-dimensional anisotropic elasticity. Much can be gained if a connection to the Stroh formalism can be established. Barnett and Lothe (1975a) appeared to be the only ones who made a connection between a three-dimensional solution and Stroh's two-dimensional formalism. Earlier, several investigators obtained the Green's function for the infinite anisotropic medium in term of a line integral on an oblique plane in the three-dimensional space. That line integral, as we will see here, is one of Barnett-Lothe tensors on an oblique plane. We propose in this chapter extensions and applications of Stroh's two-dimensional formalism to certain three-dimensional deformations of anisotropic elastic solids.


1992 ◽  
Vol 114 (3) ◽  
pp. 553-557 ◽  
Author(s):  
T. R. Hsu ◽  
N. S. Sun ◽  
G. G. Chen ◽  
Z. L. Gong

This paper presents a finite element algorithm for two-dimensional nonlinear inverse heat conduction analysis. The proposed method is capable of handling both unknown surface heat flux and unknown surface temperature of solids using temperature histories measured at a few discrete point. The proposed algorithms were used in the study of the thermofracture behavior of leaking pipelines with experimental verifications.


A complete class of first order conservation laws for two dimensional deformations in general anisotropic elastic materials is derived. The derivations are based on Stroh’s formalism for anisotropic elasticity. The general procedure proposed by P. J. Olver for the construction of conservation integrals is followed. It is shown that the conservation laws are intimately connected with Cauchy’s theorem for complex analytic functions. Real-form conservation laws that are valid for degenerate or non-degenerate materials are given.


2001 ◽  
Vol 36 (4) ◽  
pp. 359-371 ◽  
Author(s):  
A Nandi ◽  
S Neogy

A shaft is modelled using three-dimensional solid finite elements. The shear-deformation and rotary inertia effects are automatically included through the three-dimensional elasticity formulation. The formulation allows warping of plane cross-sections and takes care of gyroscopic effect. Unlike a beam element model, the present model allows the actual rotor geometry to be modelled. Shafts with complicated geometry can be modelled provided that the shaft cross-section has two axes of symmetry with equal or unequal second moment of areas. The acceleration of a point on the shaft is determined in inertial and rotating frames. It is found that the finite element formulation becomes much simpler in a rotating frame of reference that rotates about the centre-line of the bearings with an angular velocity equal to the shafts spin speed. The finite element formulation in the above frame is ideally suited to non-circular shafts with solid or hollow, prismatic or tapered sections and continuous or abrupt change in cross-sections. The shaft and the disc can be modelled using the same types of element and this makes it possible to take into account the flexibility of the disc. The formulation also allows edge cracks to be modelled. A two-dimensional model of shaft disc systems executing synchronous whirl on isotropic bearings is presented. The application of the two-dimensional formulation is limited but it reduces the number of degrees of freedom. The three-dimensional solid and two-dimensional plane stress finite element models are extensively validated using standard available results.


Sign in / Sign up

Export Citation Format

Share Document