Cattle Grazing on the Shortgrass Steppe

Author(s):  
Richard H. Hart ◽  
Justin D. Derner

Cattle are the primary grazers on the shortgrass steppe. For example, during the late 1990s, 21 shortgrass counties in Colorado reported about 2.36 million cattle compared with 283,000 sheep (National Agricultural Statistics Service, USDA, 1997a), 60,000 pronghorn antelope, and a few thousand bison (Hart, 1994). Assuming one bison or five to six sheep or pronghorn consume as much forage as one bovine (Heady and Child, 1994), cattle provide about 97% of the large-herbivore grazing pressure in this region. The ratio of cattle to other grazers is even greater in the remainder of the shortgrass steppe. In 1997, the three panhandle counties of Oklahoma reported 387,000 cattle and only 1300 sheep, whereas the 38 panhandle counties of Texas reported 4.24 million cattle and 14,000 sheep (National Agricultural Statistics Service, USDA, 1997b,c). How ever, only a bout half the cattle in the panhandle counties of Texas and Oklahoma graze on rangeland the remainer are in feedlots. Rangeland research on the shortgrass steppe (Table 17.1 describes the parameters of the major research stations in the shortgrass steppe) has included a long history of both basic ecology and grazing management. The responses of rangeland plant communities to herbivory are addressed by Milchunas et al. (chapter 16, this volume) and to disturbance are discussed by Peters et al. (chapter 6, this volume). Here we focus on research pertaining to three management practices important to cattle ranching on shortgrass steppe: stocking rates, grazing systems, and extending the grazing season via complementary pastures and use of pastures dominated by Atriplex canescens [Pursh] Nutt (fourwing saltbush). Stocking rate, de. ned as the number of animals per unit area for a speci. ed time period, is the primary and most easily controlled variable in the management of cattle grazing. Cattle weight gain responses to stocking rate or grazing pressure (animal days per unit of forage produced) have been quanti. ed in several grazing studies on the shortgrass steppe (Bement, 1969, 1974; Hart and Ashby, 1998; Klipple and Costello, 1960). Average daily gains per animal are better estimated as a function of grazing pressure, rather than stocking rate, as forage production is highly variable in this semiarid environment (Lauenroth and Sala, 1992; Milchunas et al., 1994).

2015 ◽  
Vol 37 (2) ◽  
pp. 181 ◽  
Author(s):  
Y. Sun ◽  
J. P. Angerer ◽  
F. J. Hou

Grazing strategies, consisting of grazing systems and stocking rate adjustments, have evolved from the need to sustain efficient use of the forage resources by livestock, increase animal performance and sustain forage production. A 3-year study was conducted with Tibetan sheep on the Eastern Qinghai-Tibetan Plateau, China to compare: (1) two grazing systems [season-long continuous (SLC; July to December) versus short duration with seasonal rotation (SDSR; July to September in growing-season pasture and October to December in cold-season pasture) with a stocking rate of 24 sheep months ha–1(SM ha–1)]; (2) SDSR system with 24, 36 and 48 SM ha–1; and (3) seasonal aspects of stocking rate under the SDSR system by comparing strategies of heavy stocking rate in the growing season and light stocking rate in the cold season (SDSR-HL) versus light stocking rate in the growing season and heavy stocking rate in the cold season (SDSR-LH). No differences were found between grazing systems in liveweight gain per head or per ha and in residual herbage mass. Liveweight gain per head for treatment SDSR24 was greater than for treatments SDSR36 and SDRS48, whereas liveweight gain per ha showed the opposite tendency. No differences were found between the SDSR-HL and SDSR-LH treatments in liveweight gain per head or per ha, whereas the ratio of residual herbage mass at the end of grazing the growing-season pasture to the cold pasture of treatment SDSR-LH was more than twice that of treatment SDSR-HL. Daily liveweight gain of Tibetan sheep decreased linearly with increasing grazing pressure in both growing and cold seasons. It was estimated that, at a grazing pressure index of 310 sheep days t–1 DM peak herbage mass, liveweight gain per head and ha appears to be optimised over the whole grazing period. Liveweight loss by Tibetan sheep during the cold season was apparent regardless of grazing pressure indicating that temperature had a stronger influence on sheep performance in the cold season than herbage availability.


Author(s):  
J. Hodgson

Recent assessments of the relative importance of stocking rate. stocking policy and grazing management on the output from pastoral systems are used as a starting point to argue the need for objective pasture assessments to aid control of livestock enterprises to meet production targets. Variations in stocking rates, stocking policy and other management practices all provide alternative means of control of pasture conditions which are the major determinants of pasture and animal performance. Understanding of the influence of pasture conditions on systems performance should provide a better basis for management control and for Communication between farmers, extension officers and researchers. Keywords: Stocking rate, pasture condition, pasture cover


2016 ◽  
Vol 38 (3) ◽  
pp. 261 ◽  
Author(s):  
Amanda Nunes Assis dos Anjos ◽  
Clair Jorge Olivo ◽  
Caroline Paim Sauter ◽  
Aline Rodrigues Silva ◽  
Fabiene Tomazetti dos Santos ◽  
...  

Three grazing systems with Coastcross-1 bermuda grass (CC) + 100 kg N ha-1 year-1 + common vetch; CC + 100 kg N ha-1 year-1 + arrowleaf clover; and CC + 200 kg N ha-1 year-1 were evaluated. Thirteen grazing cycles were performed during the experimental period (313 days), with two, five, four and two cycles respectively in winter, spring, summer and fall. Lactating Holstein cows were used in the evaluation. Daily accumulation rate, forage production, rate of forage disappearance, agronomic intake, grazing efficiency, herbage allowance and stocking rate were evaluated. Mean rates of forage yield and stocking rate were 20.8; 17.6 and 19.7 t DM ha-1 and 7.0; 6.8 to 6.8 animal units ha-1 day-1 for the respective forage systems. The mixture Coastcross-1 plus common vetch, fertilized with 100 kg N ha-1 year-1 and Coastcross-1 fertilized with 200 kg N ha-1 year-1 provided greater productivity and better distribution of forage throughout the seasons. 


Author(s):  
H.R. Kirton

IT is the purpose of this paper to give some idea of the vast differences in production per acre which are brought about by different grazing systems, through their effect on the stocking rate, and pasture species.


2010 ◽  
Vol 50 (7) ◽  
pp. 705 ◽  
Author(s):  
R. G. Chataway ◽  
D. G. Barber ◽  
M. N. Callow

Dairy farms in Queensland were stratified by six regions, three levels of enterprise size (0.25–0.69, 0.7–1.39 or >1.4 ML milk/year) and two rainfall zones (<1000 and >1000 mm/year). Thirteen percent of farmers (89 farms) were surveyed using a prepared questionnaire to ascertain the current production systems, forage management practices and preferences for extension services. Herd size, dairy area, milk production per cow, the use of cropping, pit silage, concentrate input and irrigation input all increased (P < 0.05) with larger enterprises. At the same time the stocking rate on high milk volume farms was almost twice that on smaller farms. The drier zone (<1000 mm/year) was associated with lower stocking rate, higher per cow production and a greater emphasis on cropping and feedpad usage (P < 0.05). The importance of enterprise growth through intensification of the existing farm land resource base is indicated through these findings. Apart from ration formulation, processes used to manage cropping land, irrigation and grazing were primarily based on tradition or intuition. In valuing extension activities, farmers across all enterprise sizes were in general agreement that information products warranted only a small investment. As enterprise size increased, a more individualised and focussed extension service, delivered through targeted discussion groups and personal coaches was favoured.


2014 ◽  
Vol 3 (2) ◽  
pp. 89 ◽  
Author(s):  
Gonzalo Becona ◽  
Laura Astigarraga ◽  
Valentin D. Picasso

<p>Evaluating greenhouse gas (GHG) emissions at farm level is an important tool to mitigate climate change. Livestock account for 80% of the total GHG emissions in Uruguay, and beef cow-calf systems are possibly the largest contributors. In cow-calf grazing systems, optimizing forage allowance and grazing intensity may increase pasture productivity, reproductive performance, beef productivity, and possibly reduce GHG emissions. This study estimated GHG emissions per kg of live weight gain (LWG) and per hectare from 20 cow-calf systems in Uruguay, with different management practices. The GHG emissions were on average 20.8 kg CO<sub>2</sub>-e.kg LWG<sup>-1</sup>, ranging from 11.4 to 32.2. Beef productivity and reproductive efficiency were the main determinants of GHG emissions. Five farm clusters were identified with different productive and environmental efficiency by numerical classification of relevant variables. Improving grazing efficiency by optimizing the stocking rate and forage production can increase beef productivity by 22% and reduce GHG emissions per kg LWG by 28% compared to “low performance” management. Further improvements in reproductive efficiency can increase productivity by 41% and reduce GHG emissions per kg LWG by 23%, resulting in a “carbon smart” strategy. However, the most intensified farms with highest stocking rate and beef productivity, did not reduce GHG emissions per kg LWG, while increased GHG emissions per ha compared to the carbon smart. This analysis showed that it is possible to simultaneously reduce carbon footprint per kg and per ha, by optimizing grazing management. This study demonstrated that there is high potential to reduce cow-calf GHG emissions through improved grazing management.</p>


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


Author(s):  
Dan Jerker B. Svantesson

This chapter provides a brief history of Internet jurisdiction taking account of key court decisions, legislation as well as developments in the academic thinking on the topic. In doing so, it divides the history of Internet jurisdiction into four relatively distinct phases. The discussion in the chapter highlights facts such as that: (1) law has largely been reactive, responding to technological developments; (2) the level of creativity applied in the search for workable solutions was seemingly higher in the earlier stages than in more recent times; and (3) unsurprisingly, the attitudes of courts, legislators, and the academic community have varied considerably over the time period examined.


Author(s):  
Lu Gao ◽  
Yao Yu ◽  
Yi Hao Ren ◽  
Pan Lu

Pavement maintenance and rehabilitation (M&R) records are important as they provide documentation that M&R treatment is being performed and completed appropriately. Moreover, the development of pavement performance models relies heavily on the quality of the condition data collected and on the M&R records. However, the history of pavement M&R activities is often missing or unavailable to highway agencies for many reasons. Without accurate M&R records, it is difficult to determine if a condition change between two consecutive inspections is the result of M&R intervention, deterioration, or measurement errors. In this paper, we employed deep-learning networks of a convolutional neural network (CNN) model, a long short-term memory (LSTM) model, and a CNN-LSTM combination model to automatically detect if an M&R treatment was applied to a pavement section during a given time period. Unlike conventional analysis methods so far followed, deep-learning techniques do not require any feature extraction. The maximum accuracy obtained for test data is 87.5% using CNN-LSTM.


1971 ◽  
Vol 22 (1) ◽  
pp. 81 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes

The applied phosphorus requirement of a pasture sown to subterranean clover was measured with and without grazing. Under moderate grazing pressure, in the year of establishment, the pasture required about 50 % more phosphorus than when ungrazed. In the following season, at a higher stocking rate, the grazed areas needed twice as much phosphorus as the ungrazed to make 90% of their maximum growth. In both years this difference in requirement between stocked and unstocked treatments was present throughout the growing season. Increased phosphorus requirement under grazing is associated with the need for greater uptake of phosphorus under conditions where redistribution of absorbed phosphorus within the plant is prevented by defoliation. It does not appear to be due to effects of defoliation on root size. Nor does it depend on differential light interception or on changes in botanical composition.


Sign in / Sign up

Export Citation Format

Share Document