Gravitational radiation

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter attempts to calculate the radiated energy of a source in the linear approximation of general relativity to infinity in the lowest order. For this, the chapter first expands the Einstein equations to quadratic order in metric perturbations. It reveals that the radiated energy is then given by the (second) quadrupole formula, which is the gravitational analog of the dipole formula in Maxwell theory. This formula is a priori valid only if the motion of the source is due to forces other than gravity. Finally, this chapter shows that, to prove this formula for the case of self-gravitating systems, the Einstein equations to quadratic order must be solved, and the radiative field in the post-linear approximation of general relativity obtained.

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter turns to the gravitational radiation produced by a system of massive objects. The discussion is confined to the linear approximation of general relativity, which is compared with the Maxwell theory of electromagnetism. In the first part of the chapter, the properties of gravitational waves, which are the general solution of the linearized vacuum Einstein equations, are studied. Next, it relates these waves to the energy–momentum tensor of the sources creating them. The chapter then turns to the ‘first quadrupole formula’, giving the gravitational radiation field of these sources when their motion is due to forces other than the gravitational force.


The field of gravitational radiation emitted from two moving particles is investigated by means of general relativity. A method of approximation is used, and in the linear approximation retarded potentials corresponding to spherical gravitational waves are introduced. As is already known, the theory in this approximation predicts that energy is lost by the system. The field equations in the second, non-linear, approximation are then considered, and it is shown that the system loses an amount of gravitational mass precisely equal to the energy carried away by the spherical waves of the linear approximation. The result is established for a large class of particle motions, but it has not been possible to determine whether energy is lost in free gravitational motion under no external forces. The main conclusion of this work is that, contrary to opinions frequently expressed, gravitational radiation has a real physical existence, and in particular, carries energy away from the sources.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 340 ◽  
Author(s):  
Luis Herrera

We endeavour to illustrate the physical relevance of the Landauer principle applying it to different important issues concerning the theory of gravitation. We shall first analyze, in the context of general relativity, the consequences derived from the fact, implied by Landauer principle, that information has mass. Next, we shall analyze the role played by the Landauer principle in order to understand why different congruences of observers provide very different physical descriptions of the same space-time. Finally, we shall apply the Landauer principle to the problem of gravitational radiation. We shall see that the fact that gravitational radiation is an irreversible process entailing dissipation, is a straightforward consequence of the Landauer principle and of the fact that gravitational radiation conveys information. An expression measuring the part of radiated energy that corresponds to the radiated information and an expression defining the total number of bits erased in that process, shall be obtained, as well as an explicit expression linking the latter to the Bondi news function.


2004 ◽  
Vol 17 (1-2) ◽  
pp. 165-197 ◽  
Author(s):  
Erhard Scholz

Hermann Weyl (1885–1955) was one of the early contributors to the mathematics of general relativity. This article argues that in 1929, for the formulation of a general relativistic framework of the Dirac equation, he both abolished and preserved in modified form the conceptual perspective that he had developed earlier in his “analysis of the problem of space.” The ideas of infinitesimal congruence from the early 1920s were aufgehoben (in all senses of the German word) in the general relativistic framework for the Dirac equation. He preserved the central idea of gauge as a “purely infinitesimal” aspect of (internal) symmetries in a group extension schema. With respect to methodology, however, Weyl gave up his earlier preferences for relatively a-priori arguments and tried to incorporate as much empiricism as he could. This signified a clearly expressed empirical turn for him. Moreover, in this step he emphasized that the mathematical objects used for the representation of matter structures stood at the center of the construction, rather than interaction fields which, in the early 1920s, he had considered as more or less derivable from geometrico-philosophical considerations.


Author(s):  
JE-AN GU

We discuss the stability of the general-relativity (GR) limit in modified theories of gravity, particularly the f(R) theory. The problem of approximating the higher-order differential equations in modified gravity with the Einstein equations (2nd-order differential equations) in GR is elaborated. We demonstrate this problem with a heuristic example involving a simple ordinary differential equation. With this example we further present the iteration method that may serve as a better approximation for solving the equation, meanwhile providing a criterion for assessing the validity of the approximation. We then discuss our previous numerical analyses of the early-time evolution of the cosmological perturbations in f(R) gravity, following the similar ideas demonstrated by the heuristic example. The results of the analyses indicated the possible instability of the GR limit that might make the GR approximation inaccurate in describing the evolution of the cosmological perturbations in the long run.


Author(s):  
H.S. Vieira ◽  
V.B. Bezerra

In this paper, we use the Lagrangian formalism of classical mechanics and some assumptions to obtain cosmological differential equations analogous to Friedmann and Einstein equations, obtained from the theory of general relativity. This method can be used to a universe constituted of incoherent matter, that is, the cosmologic substratum is comprised of dust.


2021 ◽  
Author(s):  
◽  
Gabriel Abreu

<p>General Relativity, while ultimately based on the Einstein equations, also allows one to quantitatively study some aspects of the theory without explicitly solving the Einstein equations. These geometrical notions of the theory provide an insight to the nature of more general spacetimes. In this thesis, the Raychaudhuri equation, the choice of the coordinate system, the notions of surface gravity and of entropy, and restrictions on negative energy densities on the form of the Quantum Interest Conjecture, will be discussed. First, using the Kodama vector, a geometrically preferred coordinate system is built. With this coordinate system the usual quantities, such as the Riemann and Einstein tensors, are calculated. Then, the notion of surface gravity is generalized in two different ways. The first generalization is developed considering radial ingoing and outgoing null geodesics, in situations of spherical symmetry. The other generalized surface gravity is a three-vector obtained from the spatial components of the redshifted four acceleration of a suitable set of fiducial observers. This vectorial surface gravity is then used to place a bound on the entropy of both static and rotating horizonless objects. This bound is obtain mostly by classical calculations, with a minimum use of quantum field theory in curved spacetime. Additionally, several improved versions of the Raychaudhuri equation are developed and used in different scenarios, including a two congruence generalization of the equation. Ultimately semiclassical quantum general relativity is studied in the specific form of the Quantum Inequalities, and the Quantum Interest Conjecture. A variational proof of a version of the Quantum Interest Conjecture in (3 + 1)–dimensional Minkowski space is provided.</p>


2021 ◽  
Author(s):  
◽  
Gabriel Abreu

<p>General Relativity, while ultimately based on the Einstein equations, also allows one to quantitatively study some aspects of the theory without explicitly solving the Einstein equations. These geometrical notions of the theory provide an insight to the nature of more general spacetimes. In this thesis, the Raychaudhuri equation, the choice of the coordinate system, the notions of surface gravity and of entropy, and restrictions on negative energy densities on the form of the Quantum Interest Conjecture, will be discussed. First, using the Kodama vector, a geometrically preferred coordinate system is built. With this coordinate system the usual quantities, such as the Riemann and Einstein tensors, are calculated. Then, the notion of surface gravity is generalized in two different ways. The first generalization is developed considering radial ingoing and outgoing null geodesics, in situations of spherical symmetry. The other generalized surface gravity is a three-vector obtained from the spatial components of the redshifted four acceleration of a suitable set of fiducial observers. This vectorial surface gravity is then used to place a bound on the entropy of both static and rotating horizonless objects. This bound is obtain mostly by classical calculations, with a minimum use of quantum field theory in curved spacetime. Additionally, several improved versions of the Raychaudhuri equation are developed and used in different scenarios, including a two congruence generalization of the equation. Ultimately semiclassical quantum general relativity is studied in the specific form of the Quantum Inequalities, and the Quantum Interest Conjecture. A variational proof of a version of the Quantum Interest Conjecture in (3 + 1)–dimensional Minkowski space is provided.</p>


2012 ◽  
Vol 56 (1) ◽  
pp. 139-144
Author(s):  
Dumitru N. Vulcanov ◽  
Remus-Ştefan Ş. Boată

AbstractThe article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.


Sign in / Sign up

Export Citation Format

Share Document