General Relativity and the Einstein Equations General Relativity and the Einstein Equations , Yvonne Choquet-Bruhat , Oxford U. Press, New York, 2009. $130.00 (840 pp.). ISBN 978-0-19-923072-3

Physics Today ◽  
2009 ◽  
Vol 62 (12) ◽  
pp. 54-55
Author(s):  
Kayll Lake
Author(s):  
JE-AN GU

We discuss the stability of the general-relativity (GR) limit in modified theories of gravity, particularly the f(R) theory. The problem of approximating the higher-order differential equations in modified gravity with the Einstein equations (2nd-order differential equations) in GR is elaborated. We demonstrate this problem with a heuristic example involving a simple ordinary differential equation. With this example we further present the iteration method that may serve as a better approximation for solving the equation, meanwhile providing a criterion for assessing the validity of the approximation. We then discuss our previous numerical analyses of the early-time evolution of the cosmological perturbations in f(R) gravity, following the similar ideas demonstrated by the heuristic example. The results of the analyses indicated the possible instability of the GR limit that might make the GR approximation inaccurate in describing the evolution of the cosmological perturbations in the long run.


Author(s):  
H.S. Vieira ◽  
V.B. Bezerra

In this paper, we use the Lagrangian formalism of classical mechanics and some assumptions to obtain cosmological differential equations analogous to Friedmann and Einstein equations, obtained from the theory of general relativity. This method can be used to a universe constituted of incoherent matter, that is, the cosmologic substratum is comprised of dust.


2021 ◽  
Author(s):  
◽  
Gabriel Abreu

<p>General Relativity, while ultimately based on the Einstein equations, also allows one to quantitatively study some aspects of the theory without explicitly solving the Einstein equations. These geometrical notions of the theory provide an insight to the nature of more general spacetimes. In this thesis, the Raychaudhuri equation, the choice of the coordinate system, the notions of surface gravity and of entropy, and restrictions on negative energy densities on the form of the Quantum Interest Conjecture, will be discussed. First, using the Kodama vector, a geometrically preferred coordinate system is built. With this coordinate system the usual quantities, such as the Riemann and Einstein tensors, are calculated. Then, the notion of surface gravity is generalized in two different ways. The first generalization is developed considering radial ingoing and outgoing null geodesics, in situations of spherical symmetry. The other generalized surface gravity is a three-vector obtained from the spatial components of the redshifted four acceleration of a suitable set of fiducial observers. This vectorial surface gravity is then used to place a bound on the entropy of both static and rotating horizonless objects. This bound is obtain mostly by classical calculations, with a minimum use of quantum field theory in curved spacetime. Additionally, several improved versions of the Raychaudhuri equation are developed and used in different scenarios, including a two congruence generalization of the equation. Ultimately semiclassical quantum general relativity is studied in the specific form of the Quantum Inequalities, and the Quantum Interest Conjecture. A variational proof of a version of the Quantum Interest Conjecture in (3 + 1)–dimensional Minkowski space is provided.</p>


2021 ◽  
Author(s):  
◽  
Gabriel Abreu

<p>General Relativity, while ultimately based on the Einstein equations, also allows one to quantitatively study some aspects of the theory without explicitly solving the Einstein equations. These geometrical notions of the theory provide an insight to the nature of more general spacetimes. In this thesis, the Raychaudhuri equation, the choice of the coordinate system, the notions of surface gravity and of entropy, and restrictions on negative energy densities on the form of the Quantum Interest Conjecture, will be discussed. First, using the Kodama vector, a geometrically preferred coordinate system is built. With this coordinate system the usual quantities, such as the Riemann and Einstein tensors, are calculated. Then, the notion of surface gravity is generalized in two different ways. The first generalization is developed considering radial ingoing and outgoing null geodesics, in situations of spherical symmetry. The other generalized surface gravity is a three-vector obtained from the spatial components of the redshifted four acceleration of a suitable set of fiducial observers. This vectorial surface gravity is then used to place a bound on the entropy of both static and rotating horizonless objects. This bound is obtain mostly by classical calculations, with a minimum use of quantum field theory in curved spacetime. Additionally, several improved versions of the Raychaudhuri equation are developed and used in different scenarios, including a two congruence generalization of the equation. Ultimately semiclassical quantum general relativity is studied in the specific form of the Quantum Inequalities, and the Quantum Interest Conjecture. A variational proof of a version of the Quantum Interest Conjecture in (3 + 1)–dimensional Minkowski space is provided.</p>


2012 ◽  
Vol 56 (1) ◽  
pp. 139-144
Author(s):  
Dumitru N. Vulcanov ◽  
Remus-Ştefan Ş. Boată

AbstractThe article presents some new aspects and experience on the use of computer in teaching general relativity and cosmology for undergraduate students (and not only) with some experience in computer manipulation. Some years ago certain results were reported [1] using old fashioned computer algebra platforms but the growing popularity of graphical platforms as Maple and Mathematica forced us to adapt and reconsider our methods and programs. We will describe some simple algebraic programming procedures (in Maple with GrTensorII package) for obtaining and the study of some exact solutions of the Einstein equations in order to convince a dedicated student in general relativity about the utility of a computer algebra system.


Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Denis Arruga ◽  
Jibril Ben Achour ◽  
Karim Noui

Effective models of black holes interior have led to several proposals for regular black holes. In the so-called polymer models, based on effective deformations of the phase space of spherically symmetric general relativity in vacuum, one considers a deformed Hamiltonian constraint while keeping a non-deformed vectorial constraint, leading under some conditions to a notion of deformed covariance. In this article, we revisit and study further the question of covariance in these deformed gravity models. In particular, we propose a Lagrangian formulation for these deformed gravity models where polymer-like deformations are introduced at the level of the full theory prior to the symmetry reduction and prior to the Legendre transformation. This enables us to test whether the concept of deformed covariance found in spherically symmetric vacuum gravity can be extended to the full theory, and we show that, in the large class of models we are considering, the deformed covariance cannot be realized beyond spherical symmetry in the sense that the only deformed theory which leads to a closed constraints algebra is general relativity. Hence, we focus on the spherically symmetric sector, where there exist non-trivial deformed but closed constraints algebras. We investigate the possibility to deform the vectorial constraint as well and we prove that non-trivial deformations of the vectorial constraint with the condition that the constraints algebra remains closed do not exist. Then, we compute the most general deformed Hamiltonian constraint which admits a closed constraints algebra and thus leads to a well-defined effective theory associated with a notion of deformed covariance. Finally, we study static solutions of these effective theories and, remarkably, we solve explicitly and in full generality the corresponding modified Einstein equations, even for the effective theories which do not satisfy the closeness condition. In particular, we give the expressions of the components of the effective metric (for spherically symmetric black holes interior) in terms of the functions that govern the deformations of the theory.


Sign in / Sign up

Export Citation Format

Share Document