Statistical Field Theory

Author(s):  
Giuseppe Mussardo

This book is an introduction to statistical field theory, which is an important subject within theoretical physics and a field that has seen substantial progress in recent years. The book covers fundamental topics in great detail and includes areas like conformal field theory, quantum integrability, S-matrices, braiding groups, Bethe ansatz, renormalization groups, Majorana fermions, form factors, the truncated conformal space approach and boundary field theory. It also provides an introduction to lattice statistical models. Many topics are discussed at a fairly advanced level but via a pedagogical approach. In particular, the book presents in a clear way non-perturbative methods of quantum field theories that have become decisive tools in many different areas of statistical and condensed matter physics, and which are currently an essential foundation of the working knowledge of a modern theoretical physicist.

This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


2021 ◽  
Vol 182 (3) ◽  
Author(s):  
Gernot Münster ◽  
Manuel Cañizares Guerrero

AbstractRoughening of interfaces implies the divergence of the interface width w with the system size L. For two-dimensional systems the divergence of $$w^2$$ w 2 is linear in L. In the framework of a detailed capillary wave approximation and of statistical field theory we derive an expression for the asymptotic behaviour of $$w^2$$ w 2 , which differs from results in the literature. It is confirmed by Monte Carlo simulations.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marco Panero ◽  
Antonio Smecca

Abstract We present a high-precision Monte Carlo study of the classical Heisenberg model in four dimensions. We investigate the properties of monopole-like topological excitations that are enforced in the broken-symmetry phase by imposing suitable boundary conditions. We show that the corresponding magnetization and energy-density profiles are accurately predicted by previous analytical calculations derived in quantum field theory, while the scaling of the low-energy parameters of this description questions an interpretation in terms of particle excitations. We discuss the relevance of these findings and their possible experimental applications in condensed-matter physics.


Author(s):  
Andrei Khrennikov ◽  
Achref Majid

In this paper, we prove a large deviation principle for the background field in prequantum statistical field model. We show a number of examples by choosing a specific random field in our model.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Gianluigi Zangari del Balzo

An amendment to this paper has been published and can be accessed via the original article.


2020 ◽  
Author(s):  
Gianluigi Zangari del Balzo

Abstract Background Stochastic processes leading voltage-gated ion channel dynamics on the nerve cell membrane are a sufficient condition to describe membrane conductance through statistical mechanics of disordered and complex systems.Results Voltage-gated ion channels in the nerve cell membrane are described by the Ising model. Stochastic circuital elements called ”Ising machines” are introduced. Action potentials are described as quasi-particles of a statistical field theory for the Ising system.Conclusions The particle description of action potentials is a new powerful tool to describe the generation and propagation of nerve impulses. We thus have the opportunity to exploit another useful point of view to describe the generation and propagation of nerve impulses, especially when classical electrophysiological models break down. Moreover, the particle description allows us to develop new hardware and software devices based on general and theoretical physics to study neurodegenerative and demyelinating diseases as Multiple Sclerosis and Alzheimer’s disease, even integrated by connectomes. It is also suitable for the study of complex networks, quantum computing, artificial intelligence, machine and deep learning, cryptography, ultra-fast lines for entanglement experiments and many other applications of medical, physical and engineering interest.


Author(s):  
Jean Zinn-Justin

Some equilibrium properties in statistical quantum field theory (QFT), that is, relativistic QFT at finite temperature are reviewed. Study of QFT at finite temperature is motivated by cosmological problems, high energy heavy ion collisions, and speculations about possible phase transitions, also searched for in numerical simulations. In particular, the situation of finite temperature phase transitions, or the limit of high temperature (an ultra-relativistic limit where the temperature is much larger than the physical masses of particles) are discussed. The concept of dimensional reduction emerges, in many cases, statistical properties of finite-temperature QFT in (1, d − 1) dimensions can be described by an effective classical statistical field theory in (d − 1) dimensions. Dimensional reduction generalizes a property already observed in the non-relativistic example of the Bose gas, and indicates that quantum effects are less important at high temperature. The corresponding technical tools are a mode-expansion of fields in the Euclidean time variable, singling out the zero modes of boson fields, followed by a local expansion of the resulting (d − 1)-dimensional effective field theory (EFT). Additional physical intuition about QFT at finite temperature in (1, d−1) dimensions can be gained by considering it as a classical statistical field theory in d dimensions, with finite size in one dimension. This identification makes an analysis of finite temperature QFT in terms of the renormalization group (RG), and the theory of finite-size effects of the classical theory, possible. These ideas are illustrated with several simple examples, the φ4 field theory, the non-linear σ-model, the Gross–Neveu model and some gauge theories.


Sign in / Sign up

Export Citation Format

Share Document