Gaseous Bose–Einstein condensates

Quantum 20/20 ◽  
2019 ◽  
pp. 285-302
Author(s):  
Ian R. Kenyon

The (gaseous) BECs are introduced: clouds of 106−8 alkali metal atoms, usually 87Rb or 23Na, below ~1 μ‎K. The laser cooling and magnetic trapping are described including the evaporation step needed to reach the conditions for condensation. The magnetooptical and Ioffe–Pritchard traps are described. Imaging methods, both destructive and non-destructive are described. Evidence of condensation is presented; and of interference between separated clouds, thus confirming the coherence of the condensates. The measurement of the condensate fraction is recounted. The Gross–Pitaevskii analysis of condensate properties is given in an appendix. How Bragg spectroscopy is used to obtain the dispersion relation for excitations is detailed. Finally the BEC/BCS crossover is introduced and the role therein of Feshbach resonances.

1997 ◽  
Vol 11 (28) ◽  
pp. 3281-3296
Author(s):  
Carl E. Wieman

Bose–Einstein condensation in a gas has now been achieved. Atoms are cooled to the point of condensation using laser cooling and trapping, followed by magnetic trapping and evaporative cooling. These techniques are explained, as well as the techniques by which we observe the cold atom samples. Three different signatures of Bose–Einstein condensation are described. A number of properties of the condensate, including collective excitations, distortions of the wave function by interactions, and the fraction of atoms in the condensate versus temperature, have also been measured.


1998 ◽  
Vol 57 (3) ◽  
pp. R1505-R1508 ◽  
Author(s):  
Erich J. Mueller ◽  
Paul M. Goldbart ◽  
Yuli Lyanda-Geller

2007 ◽  
Vol 76 (5) ◽  
Author(s):  
Andrew J. Berglund ◽  
Siu Au Lee ◽  
Jabez J. McClelland

2012 ◽  
Vol 27 (31) ◽  
pp. 1250181 ◽  
Author(s):  
E. CASTELLANOS ◽  
C. LÄMMERZAHL

We analyze the effects caused by an anomalous single-particle dispersion relation suggested in several quantum-gravity models, upon the thermodynamics of a Bose–Einstein condensate trapped in a generic three-dimensional power-law potential. We prove that the shift in the condensation temperature, caused by a deformed dispersion relation, described as a non-trivial function of the number of particles and the shape associated to the corresponding trap, could provide bounds for the parameters associated to such deformation. In addition, we calculate the fluctuations in the number of particles as a criterium of thermodynamic stability for these systems. We show that the apparent instability caused by the anomalous fluctuations in the thermodynamic limit can be suppressed considering the lowest energy associated to the system in question.


2019 ◽  
Vol 115 (17) ◽  
pp. 173502 ◽  
Author(s):  
P. Bevington ◽  
R. Gartman ◽  
W. Chalupczak

Science ◽  
2012 ◽  
Vol 337 (6090) ◽  
pp. 75-78 ◽  
Author(s):  
Matthias Wolke ◽  
Julian Klinner ◽  
Hans Keßler ◽  
Andreas Hemmerich

Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.


Sign in / Sign up

Export Citation Format

Share Document