The Alexander Gored Ball and the Bing Decomposition

2021 ◽  
pp. 76-86
Author(s):  
Stefan Behrens ◽  
Min Hoon Kim

‘The Alexander Gored Ball and the Bing Decomposition’ provides a concrete and nontrivial application of the tools of decomposition space theory introduced in the previous chapter. The complement of the Alexander horned ball in the 3-sphere is called the Alexander gored ball. This space is described in three distinct ways: as an intersection of 3-balls; as a 3-dimensional grope; and as a decomposition space. Bing’s theorem that the double of the Alexander gored ball is homeomorphic to the 3-sphere is presented. This gives the first example of a truly nontrivial shrink and, moreover, an example of an exotic involution of the 3-sphere.

The disc embedding theorem provides a detailed proof of the eponymous theorem in 4-manifold topology. The theorem, due to Michael Freedman, underpins virtually all of our understanding of 4-manifolds in the topological category. Most famously, this includes the 4-dimensional topological Poincaré conjecture. Combined with the concurrent work of Simon Donaldson, the theorem reveals a remarkable disparity between the topological and smooth categories for 4-manifolds. A thorough exposition of Freedman’s proof of the disc embedding theorem is given, with many new details. A self-contained account of decomposition space theory, a beautiful but outmoded branch of topology that produces non-differentiable homeomorphisms between manifolds, is provided. Techniques from decomposition space theory are used to show that an object produced by an infinite, iterative process, which we call a skyscraper, is homeomorphic to a thickened disc, relative to its boundary. A stand-alone interlude explains the disc embedding theorem’s key role in smoothing theory, the existence of exotic smooth structures on Euclidean space, and all known homeomorphism classifications of 4-manifolds via surgery theory and the s-cobordism theorem. The book is written to be accessible to graduate students working on 4-manifolds, as well as researchers in related areas. It contains over a hundred professionally rendered figures.


2021 ◽  
pp. 44-62
Author(s):  
Stefan Behrens ◽  
Allison N. Miller ◽  
Matthias Nagel ◽  
Peter Teichner

‘The Schoenflies Theorem after Mazur, Morse, and Brown’ provides two proofs of the Schoenflies theorem. The Schoenflies theorem states that every bicollared embedding of an (n – 1)-sphere in the n-sphere splits the n-sphere into two balls. This chapter provides two proofs. The first is due to Mazur and Morse; it utilizes an infinite ‘swindle’ and a classical technique called push-pull. The second proof, due to Brown, serves as an introduction to shrinking, or decomposition space theory. The latter is a beautiful, but outmoded, branch of topology that can be used to produce non-differentiable homeomorphisms between manifolds, especially from a manifold to a quotient space. Techniques from decomposition space theory are essential in the proof of the disc embedding theorem.


2021 ◽  
pp. 27-42
Author(s):  
Arunima Ray

‘Outline of the Upcoming Proof’ provides a comprehensive outline of the proof of the disc embedding theorem. The disc embedding theorem for topological 4-manifolds, due to Michael Freedman, underpins virtually all our understanding of topological 4-manifolds. The famously intricate proof utilizes techniques from both decomposition space theory and smooth manifold topology. The latter is used to construct an infinite iterated object, called a skyscraper, and the former to construct homeomorphisms from a given topological space to a quotient space. The detailed proof of the disc embedding theorem is the core aim of this book. In this chapter, a comprehensive outline of the proof is provided, indicating the chapters in which each aspect is discussed in detail.


2021 ◽  
pp. 62-76
Author(s):  
Christopher W. Davis ◽  
Boldizsár Kalmár ◽  
Min Hoon Kim ◽  
Henrik Rüping

‘Decomposition Space Theory and the Bing Shrinking Criterion’ gives a proof of the central Bing shrinking criterion and then provides an introduction to the key notions of the field of decomposition space theory. The chapter begins by proving the Bing shrinking criterion, which characterizes when a given map between compact metric spaces is approximable by homeomorphisms. Next, it develops the elements of the theory of decomposition spaces. A key fact is that a decomposition space associated with an upper semi-continuous decomposition of a compact metric space is again a compact metric space. Decomposition spaces are key in the proof of the disc embedding theorem.


2021 ◽  
pp. 407-446
Author(s):  
Stefan Behrens ◽  
Daniel Kasprowski ◽  
Mark Powell ◽  
Arunima Ray

‘Skyscrapers Are Standard: The Details’ provides a thorough and detailed proof that every skyscraper is homeomorphic to the standard 2-handle, relative to the attaching region. Results from decomposition space theory established in Part I and the constructive results from Part II are combined. The idea is to construct a subset of a skyscraper called the design, define an embedding of this subset into the standard 2-handle, and then consider the decomposition spaces obtained by quotienting out the connected components of the complement of this common subset. It is shown that the decomposition spaces are homeomorphic, and that both quotient maps are approximable by homeomorphisms. This chapter also shows that everything can be done fixing a neighbourhood of the attaching region. It is then deduced that skyscrapers are standard, as desired.


2021 ◽  
pp. 395-398
Author(s):  
Mark Powell ◽  
Arunima Ray

‘Key Facts about Skyscrapers and Decomposition Space Theory’ summarizes the input from Parts I and II needed for the remainder of the proof of the disc embedding theorem. Precise references to previous chapters are provided. This enables Part IV to be read independently from the previous parts, provided the reader is willing to accept the facts from Parts I and II summarized in this chapter. The listed facts include the shrinking of mixed, ramified Bing–Whitehead decompositions of the solid torus, the shrinking of null decompositions consisting of recursively starlike-equivalent sets, the ball to ball theorem, the skyscraper embedding theorem, and the collar adding lemma.


Author(s):  
Rainer Picard

SynopsisThe classically well-known relation between the number of linearly independent solutions of the electro- and magnetostatic boundary value problems (harmonic Dirichlet and Neumann vector fields) and topological characteristics (genus and number of boundaries) of the underlying domain in 3-dimensional euclidean space is investigated in the framework of Hilbert space theory. It can be shown that this connection is still valid for a large class of domains with not necessarily smooth boundaries (segment property). As an application the inhomogeneous boundary value problems of electro- and magnetostatics are discussed.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
C.W. Akey ◽  
M. Szalay ◽  
S.J. Edelstein

Three methods of obtaining 20 Å resolution in sectioned protein crystals have recently been described. They include tannic acid fixation, low temperature embedding and grid sectioning. To be useful for 3-dimensional reconstruction thin sections must possess suitable resolution, structural fidelity and a known contrast. Tannic acid fixation appears to satisfy the above criteria based on studies of crystals of Pseudomonas cytochrome oxidase, orthorhombic beef liver catalase and beef heart F1-ATPase. In order to develop methods with general applicability, we have concentrated our efforts on a trigonal modification of catalase which routinely demonstrated a resolution of 40 Å. The catalase system is particularly useful since a comparison with the structure recently solved with x-rays will permit evaluation of the accuracy of 3-D reconstructions of sectioned crystals.Initially, we re-evaluated the packing of trigonal catalase crystals studied by Longley. Images of the (001) plane are of particular interest since they give a projection down the 31-screw axis in space group P3121. Images obtained by the method of Longley or by tannic acid fixation are negatively contrasted since control experiments with orthorhombic catalase plates yield negatively stained specimens with conditions used for the larger trigonal crystals.


Author(s):  
Atul S. Ramani ◽  
Earle R. Ryba ◽  
Paul R. Howell

The “decagonal” phase in the Al-Co-Cu system of nominal composition Al65CO15Cu20 first discovered by He et al. is especially suitable as a topic of investigation since it has been claimed that it is thermodynamically stable and is reported to be periodic in the dimension perpendicular to the plane of quasiperiodic 10-fold symmetry. It can thus be expected that it is an important link between fully periodic and fully quasiperiodic phases. In the present paper, we report important findings of our transmission electron microscope (TEM) study that concern deviations from ideal decagonal symmetry of selected area diffraction patterns (SADPs) obtained from several “decagonal” phase crystals and also observation of a lattice of main reflections on the 10-fold and 2-fold SADPs that implies complete 3-dimensional lattice periodicity and the fundamentally incommensurate nature of the “decagonal” phase. We also present diffraction evidence for a new transition phase that can be classified as being one-dimensionally quasiperiodic if the lattice of main reflections is ignored.


Sign in / Sign up

Export Citation Format

Share Document