Deviations from Ideal Decagonal Symmetry in Electron Diffraction Patterns of the “Decagonal” Phase in the Al-Co-Cu Alloy System

Author(s):  
Atul S. Ramani ◽  
Earle R. Ryba ◽  
Paul R. Howell

The “decagonal” phase in the Al-Co-Cu system of nominal composition Al65CO15Cu20 first discovered by He et al. is especially suitable as a topic of investigation since it has been claimed that it is thermodynamically stable and is reported to be periodic in the dimension perpendicular to the plane of quasiperiodic 10-fold symmetry. It can thus be expected that it is an important link between fully periodic and fully quasiperiodic phases. In the present paper, we report important findings of our transmission electron microscope (TEM) study that concern deviations from ideal decagonal symmetry of selected area diffraction patterns (SADPs) obtained from several “decagonal” phase crystals and also observation of a lattice of main reflections on the 10-fold and 2-fold SADPs that implies complete 3-dimensional lattice periodicity and the fundamentally incommensurate nature of the “decagonal” phase. We also present diffraction evidence for a new transition phase that can be classified as being one-dimensionally quasiperiodic if the lattice of main reflections is ignored.

1991 ◽  
Vol 235 ◽  
Author(s):  
R. Perez ◽  
J. Reyes-Gasga ◽  
M. Jose-Yacaman

ABSTRACTAn investigation of the phase transformations experienced by the decagonal and icosahedral phases in two different quaternary -alloys is carried out. The transformation in the decagonal phase of Al-Cu-Co-Si alloy is induced by the electron radiation in a transmission electron microscope. However, in the icosahedral phase of Al-Cu-Co-Fe alloy this transformation is induced by annealing. Electron diffraction patterns obtained from both phases suggest that the deformation mechanism involved in these kind of transitions is related with twinning


Author(s):  
U. Gross ◽  
P. Hagemann

By addition of analytical equipment, scanning transmission accessories and data processing equipment the basic transmission electron microscope (TEM) has evolved into a comprehensive information gathering system. This extension has led to increased complexity of the instrument as compared with the straightforward imaging microscope, since in general new information capacity has required the addition of new control hardware. The increased operational complexity is reflected in a proliferation of knobs and buttons.In the conventional electron microscope design the operating panel of the instrument has distinct control elements to alter optical conditions of the microscope column in different modes. As a consequence a multiplicity of control functions has been inevitable. Examples of this are the three pairs of focus and magnification controls needed for TEM imaging, diffraction patterns, and STEM images.


Author(s):  
H. Weiland ◽  
D. P. Field

Recent advances in the automatic indexing of backscatter Kikuchi diffraction patterns on the scanning electron microscope (SEM) has resulted in the development of a new type of microscopy. The ability to obtain statistically relevant information on the spatial distribution of crystallite orientations is giving rise to new insight into polycrystalline microstructures and their relation to materials properties. A limitation of the technique in the SEM is that the spatial resolution of the measurement is restricted by the relatively large size of the electron beam in relation to various microstructural features. Typically the spatial resolution in the SEM is limited to about half a micron or greater. Heavily worked structures exhibit microstructural features much finer than this and require resolution on the order of nanometers for accurate characterization. Transmission electron microscope (TEM) techniques offer sufficient resolution to investigate heavily worked crystalline materials.Crystal lattice orientation determination from Kikuchi diffraction patterns in the TEM (Figure 1) requires knowledge of the relative positions of at least three non-parallel Kikuchi line pairs in relation to the crystallite and the electron beam.


1981 ◽  
Vol 7 ◽  
Author(s):  
A. Mogro-Campero ◽  
E.L. Hall ◽  
J.L. Walter ◽  
A.J. Ratkowski

ABSTRACTSpecimens of amorphous Fe75B25 produced by rapid quenching from the melt were annealed to complete crystallization and subjected to 1 MeV electron irradiation in a transmission electron microscope at room temperature and at 130 K. The irradiation was interrupted at various intervals in order to obtain bright field images and diffraction patterns. The Fe3B crystals did not become amorphous at room temperature, even after damage levels of several dpa, whereas at 130 K the crystalline to amorphous transformation was observed to be complete at damage levels below 1 dpa. The results are combined with those of ion irradiation work on Fe3B; qualitative agreement is found between Fe3B and previous work on the Zr3Al alloy concerning their response to displacement damage by electron and ion irradiation.


2001 ◽  
Vol 16 (12) ◽  
pp. 3361-3365 ◽  
Author(s):  
Yuan-fang Liu ◽  
Jing-hui Zeng ◽  
Wei-xin Zhang ◽  
Wei-chao Yu ◽  
Yi-tai Qian ◽  
...  

Nanorods Bi3Se4 were synthesized directly through the reaction between BiCl3 and elemental selenium in an autoclave with hydrazine hydrate as solvent at 165 °C for 10 h. X-ray powder diffraction patterns, x-ray photoelectron spectra, and transmission electron microscope images show that the products are well-crystallized hexagonal Bi3Se4 nanorods. The solvent hydrazine hydrate played an important role in formation and growth of Bi3Se4 nanorods. The possible reaction mechanism was proposed.


2005 ◽  
Vol 907 ◽  
Author(s):  
Thomas Bradley LaGrange ◽  
Geoffrey H. Campbell ◽  
Jeffrey D. Colvin ◽  
Wayne E. King ◽  
Nigel D. Browning ◽  
...  

AbstractWe have measured the transient events of the α-β martensitic transformation in nanocrystalline Ti films via single shot electron diffraction patterns with 1.5 ns temporal resolution. This was accomplished with a newly constructed dynamic transmission electron microscope (DTEM), which combines pulsed laser systems and pump-probe techniques with a conventional TEM. The DTEM thereby enables studies of transformations that are (1) far too fast to be captured by conventional bulk techniques, and (2) difficult to study with current ultrafast electron diffraction (UED) instruments (which typically require an accumulation of multiple shots for each diffraction pattern). Martensitic transformations in nanocrystalline materials meet both criteria, with their rapid nucleation, characteristic interface velocities ∼1 km/s, and significant irreversible microstructural changes. Free-standing 40-nm-thick Ti films were laser-heated at a rate of ∼1010 K/s to a temperature above the 1155 K transition point, then probed at various time intervals with a 1.5-ns-long intense electron pulse. Diffraction patterns show an almost complete transition to the β phase within 500 ns. Post-mortem analysis (after the sample is allowed to cool) shows a reversion to the α phase coupled with substantial grain growth, lath formation, and texture modification. The cooled material also shows a complete lack of apparent dislocations, suggesting the possible importance of a "massive" short-range diffusion mechanism.


1998 ◽  
Vol 553 ◽  
Author(s):  
S. Ritsch ◽  
K. Hiraga ◽  
C. Beeli ◽  
T. Gödecke ◽  
M. Scheffer ◽  
...  

AbstractBesides the six established decagonal states of the Al-Co-Ni quasicrystal two more modifications have been discovered by means of transmission electron microscopy. One is a pentagonal quasicrystal with a superstructure found in specimens with a very high Co-content and quenched from the highest possible temperature lying within the stability field of decagonal Al-Co-Ni. Its electron diffraction patterns are characterized by a 5-fold rotation axis as a unique symmetry element as well as superstructure reflections similar to those of a related decagonal phase. The other is a one-dimensional quasicrystal closely related to decagonal Al-Co-Ni. The modulation length of 61 Å along the periodic direction in its pseudo 10-fold diffraction patterns can be assumed to be caused by a strong linear, uniform, phason strain in the material.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2294 ◽  
Author(s):  
Seyedmehdi Hosseini ◽  
Pavel Novák

A new strategy was applied to develop nano-quasicrystalline phase in well-known AlNiCo ternary system. This approach was based on electroless Ni-P plating of the starting powders and subsequent ball milling in a protective atmosphere without additional annealing or sintering processes. Microstructural evolution and phase transformation of both raw and coated particles were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. After 360 min of mechanical alloying, the peaks demonstrating the formation of nano-quasicrystalline phase appeared in XRD pattern of the coated powders, while those in mechanically alloyed raw powders remained mostly unchanged. The formation of nano-quasicrystalline phase in the vicinity of the primary elements was also confirmed by the corresponding selected area diffraction patterns, and images generated by transmission electron microscope (TEM).


Sign in / Sign up

Export Citation Format

Share Document