Properties, Predication, and Arbitrary Sets

2020 ◽  
pp. 225-239
Author(s):  
Bob Hale

Shapiro and Hale disagree over the appropriate domain of quantification for second-order logic: Shapiro allows property variables to range over the full power set of the first-order domain, whereas Hale restricts the domain to only subsets which can be defined. Hale defends his view, via a discussion of Shapiro’s view that objects in a domain of quantification need not be able to be objects of singular reference (for example, geometrical points and electrons). Shapiro’s view is clearly at odds with Hale’s favoured broadly Fregean approach to ontology, according to which objects are simply those things to which reference may be made by means of actual or possible singular terms.

2013 ◽  
Vol 6 (4) ◽  
pp. 637-658 ◽  
Author(s):  
G.ALDO ANTONELLI

AbstractWhile second-order quantifiers have long been known to admit nonstandard, or“general” interpretations, first-order quantifiers (when properly viewed as predicates of predicates) also allow a kind of interpretation that does not presuppose the full power-set of that interpretation’s first-order domain. This paper explores some of the consequences of such “general” interpretations for (unary) first-order quantifiers in a general setting, emphasizing the effects of imposing various further constraints that the interpretation is to satisfy.


2020 ◽  
pp. 187-212
Author(s):  
Bob Hale

Quine’s charge against second-order logic is that it carries massive existential commitments. This chapter argues that if we interpret second-order variables as ranging over properties construed in accordance with an abundant or deflationary conception, Quine’s charge can be resisted. This need not preclude the use of model-theoretic semantics for second-order languages; but it precludes the standard semantics, along with the more general Henkin semantics, of which it is a special case. To that extent, the approach of this chapter has revisionary implications; it is, however, compatible with the different special case in which second-order variables are taken to range over definable subsets of the first-order domain, and with respect to such a semantics, important metalogical results obtainable under the standard semantics may still be obtained. Finally, the chapter discusses the relations between second-order logic, interpreted as recommended, and a strong version of schematic ancestral logic promoted in recent work by Richard Kimberly Heck.


Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


Author(s):  
Stewart Shapiro

Typically, a formal language has variables that range over a collection of objects, or domain of discourse. A language is ‘second-order’ if it has, in addition, variables that range over sets, functions, properties or relations on the domain of discourse. A language is third-order if it has variables ranging over sets of sets, or functions on relations, and so on. A language is higher-order if it is at least second-order. Second-order languages enjoy a greater expressive power than first-order languages. For example, a set S of sentences is said to be categorical if any two models satisfying S are isomorphic, that is, have the same structure. There are second-order, categorical characterizations of important mathematical structures, including the natural numbers, the real numbers and Euclidean space. It is a consequence of the Löwenheim–Skolem theorems that there is no first-order categorical characterization of any infinite structure. There are also a number of central mathematical notions, such as finitude, countability, minimal closure and well-foundedness, which can be characterized with formulas of second-order languages, but cannot be characterized in first-order languages. Some philosophers argue that second-order logic is not logic. Properties and relations are too obscure for rigorous foundational study, while sets and functions are in the purview of mathematics, not logic; logic should not have an ontology of its own. Other writers disqualify second-order logic because its consequence relation is not effective – there is no recursively enumerable, sound and complete deductive system for second-order logic. The deeper issues underlying the dispute concern the goals and purposes of logical theory. If a logic is to be a calculus, an effective canon of inference, then second-order logic is beyond the pale. If, on the other hand, one aims to codify a standard to which correct reasoning must adhere, and to characterize the descriptive and communicative abilities of informal mathematical practice, then perhaps there is room for second-order logic.


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


2004 ◽  
Vol 69 (1) ◽  
pp. 118-136 ◽  
Author(s):  
H. Jerome Keisler ◽  
Wafik Boulos Lotfallah

AbstractThis paper studies the expressive power that an extra first order quantifier adds to a fragment of monadic second order logic, extending the toolkit of Janin and Marcinkowski [JM01].We introduce an operation existsn (S) on properties S that says “there are n components having S”. We use this operation to show that under natural strictness conditions, adding a first order quantifier word u to the beginning of a prefix class V increases the expressive power monotonically in u. As a corollary, if the first order quantifiers are not already absorbed in V, then both the quantifier alternation hierarchy and the existential quantifier hierarchy in the positive first order closure of V are strict.We generalize and simplify methods from Marcinkowski [Mar99] to uncover limitations of the expressive power of an additional first order quantifier, and show that for a wide class of properties S, S cannot belong to the positive first order closure of a monadic prefix class W unless it already belongs to W.We introduce another operation alt(S) on properties which has the same relationship with the Circuit Value Problem as reach(S) (defined in [JM01]) has with the Directed Reachability Problem. We use alt(S) to show that Πn ⊈ FO(Σn), Σn ⊈ FO(∆n). and ∆n+1 ⊈ FOB(Σn), solving some open problems raised in [Mat98].


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


2016 ◽  
Vol 17 (4) ◽  
pp. 1-18 ◽  
Author(s):  
Michael Elberfeld ◽  
Martin Grohe ◽  
Till Tantau

Sign in / Sign up

Export Citation Format

Share Document