The olfactory system

2020 ◽  
pp. 217-231
Author(s):  
Edmund T. Rolls

There are 1000 gene-specified olfactory receptor types projecting to the olfactory bulb and then to the olfactory (pyriform) cortex. This processing enables what the odour is to be represented. The olfactory (pyriform) cortex then projects to the orbitofrontal cortex, where the representation is mapped away from a gene-specified space into an odour reward value space, with the orbitofrontal cortex responding for example to the pleasantness of odours including the smell and flavour of food. The mechanism of the transform includes pattern association with stimuli in other modalities, such as the taste and texture of food.

2020 ◽  
pp. 192-216
Author(s):  
Edmund T. Rolls

Information is represented in taste regions up to and including the insular primary taste system of what the taste is independent of its reward value and pleasantness with a sparse distributed representation of sweet, salt, bitter, sour and umami inputs. The texture of food in the mouth, including fat texture, is also represented in these areas. The insular taste cortex then projects to the orbitofrontal cortex, in which the reward value and pleasantness of the taste and flavour are represented, with olfactory components included.


2015 ◽  
Vol 112 (41) ◽  
pp. 12846-12851 ◽  
Author(s):  
Filomene G. Morrison ◽  
Brian G. Dias ◽  
Kerry J. Ressler

Although much work has investigated the contribution of brain regions such as the amygdala, hippocampus, and prefrontal cortex to the processing of fear learning and memory, fewer studies have examined the role of sensory systems, in particular the olfactory system, in the detection and perception of cues involved in learning and memory. The primary sensory receptive field maps of the olfactory system are exquisitely organized and respond dynamically to cues in the environment, remaining plastic from development through adulthood. We have previously demonstrated that olfactory fear conditioning leads to increased odorant-specific receptor representation in the main olfactory epithelium and in glomeruli within the olfactory bulb. We now demonstrate that olfactory extinction training specific to the conditioned odor stimulus reverses the conditioning-associated freezing behavior and odor learning-induced structural changes in the olfactory epithelium and olfactory bulb in an odorant ligand-specific manner. These data suggest that learning-induced freezing behavior, structural alterations, and enhanced neural sensory representation can be reversed in adult mice following extinction training.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Gowoon Son ◽  
Seung-Jun Yoo ◽  
Shinwoo Kang ◽  
Ameer Rasheed ◽  
Da Hae Jung ◽  
...  

Abstract Background Hyposmia in Alzheimer’s disease (AD) is a typical early symptom according to numerous previous clinical studies. Although amyloid-β (Aβ), which is one of the toxic factors upregulated early in AD, has been identified in many studies, even in the peripheral areas of the olfactory system, the pathology involving olfactory sensory neurons (OSNs) remains poorly understood. Methods Here, we focused on peripheral olfactory sensory neurons (OSNs) and delved deeper into the direct relationship between pathophysiological and behavioral results using odorants. We also confirmed histologically the pathological changes in 3-month-old 5xFAD mouse models, which recapitulates AD pathology. We introduced a numeric scale histologically to compare physiological phenomenon and local tissue lesions regardless of the anatomical plane. Results We observed the odorant group that the 5xFAD mice showed reduced responses to odorants. These also did not physiologically activate OSNs that propagate their axons to the ventral olfactory bulb. Interestingly, the amount of accumulated amyloid-β (Aβ) was high in the OSNs located in the olfactory epithelial ectoturbinate and the ventral olfactory bulb glomeruli. We also observed irreversible damage to the ectoturbinate of the olfactory epithelium by measuring the impaired neuronal turnover ratio from the basal cells to the matured OSNs. Conclusions Our results showed that partial and asymmetrical accumulation of Aβ coincided with physiologically and structurally damaged areas in the peripheral olfactory system, which evoked hyporeactivity to some odorants. Taken together, partial olfactory dysfunction closely associated with peripheral OSN’s loss could be a leading cause of AD-related hyposmia, a characteristic of early AD.


2014 ◽  
Author(s):  
Takushi Kishida ◽  
J. G. M. Thewissen ◽  
Sharon Usip ◽  
John C George ◽  
Robert S Suydam

Although modern baleen whales still possess a functional olfactory systems that includes olfactory bulbs, cranial nerve I and olfactory receptor genes, their olfactory capabilities have been reduced profoundly. This is probably in response to their fully aquatic lifestyle. The glomeruli that occur in the olfactory bulb can be divided into two non-overlapping domains, a dorsal domain and a ventral domain. Recent molecular studies revealed that all modern whales have lost olfactory receptor genes and marker genes that are specific to the dorsal domain, and that a modern baleen whale possess only 60 olfactory receptor genes. Here we show that olfactory bulb of bowhead whales (Balaena mysticetus, Mysticeti) lacks glomeruli on the dorsal side, consistent with the molecular data. In addition, we estimate that there are more than 4,000 glomeruli in the bowhead whale olfactory bulb. Olfactory sensory neurons that express the same olfactory receptor in mice generally project to two specific glomeruli in an olfactory bulb, meaning that ratio of the number of olfactory receptors : the number of glomeruli is approximately 1:2. However, we show here that this ratio is not applicable to whales, indicating the limitation of mice as model organisms for understanding the initial coding of odor information among mammals.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0165230
Author(s):  
Zu Soh ◽  
Shinya Nishikawa ◽  
Yuichi Kurita ◽  
Noboru Takiguchi ◽  
Toshio Tsuji

2021 ◽  
pp. 851-861
Author(s):  
Kelly D. Flemming

This chapter briefly repeats key anatomic characteristics and then reviews clinical disorders affecting each cranial nerve in addition to the brainstem. More specifically, this chapter covers cranial nerves I, V, VII, and IX through XII plus the brainstem. The olfactory nerve is a special visceral afferent nerve that functions in the sense of smell. The axons of the olfactory receptor cells within the nasal cavity extend through the cribriform plate to the olfactory bulb. These olfactory receptor cell axons synapse with mitral cells in the olfactory bulb. Mitral cell axons project to the primary olfactory cortex and amygdala. The olfactory cortex interconnects with various autonomic and visceral centers.


1956 ◽  
Vol 186 (2) ◽  
pp. 255-257 ◽  
Author(s):  
Raymond R. Walsh

Studies of single-cell spike discharges in the olfactory bulb of the rabbit indicate the presence of three classes of neurons as characterized by their discharge patterns. Cells of class I discharge continuously and spontaneously; class II cells discharge intermittently in bursts, in synchrony with the passage of air through the nose. Cells of classes I and II are unmodified during olfactory stimulation. It appears there are many cells in the olfactory bulb whose discharge patterns are unrelated to excitation of the olfactory receptors by odors. Cells of class III respond to appropriate odors; the response of such cells to some odors and not others indicates that odor specificity is a fundamental characteristic of the olfactory system.


Sign in / Sign up

Export Citation Format

Share Document