primary olfactory cortex
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Magor L Lőrincz ◽  
Ildikó Piszár

Originating from the brainstem raphe nuclei, serotonin is an important neuromodulator involved in a variety of physiological and pathological functions. Specific optogenetic stimulation of serotonergic neurons results in the divisive suppression of spontaneous, but not sensory evoked activity in the majority of neurons in the primary olfactory cortex and an increase in firing in a minority of neurons. To reveal the mechanisms involved in this dual serotonergic control of cortical activity we used a combination of in vitro electrophysiological recordings from identified neurons in the primary olfactory cortex, optogenetics and pharmacology and found that serotonin suppressed the activity of principal neurons, but excited local interneurons. The results have important implications in sensory information processing and other functions of the olfactory cortex and related brain areas.


2021 ◽  
Vol 15 ◽  
Author(s):  
Torben Noto ◽  
Guangyu Zhou ◽  
Qiaohan Yang ◽  
Gregory Lane ◽  
Christina Zelano

Three subregions of the amygdala receive monosynaptic projections from the olfactory bulb, making them part of the primary olfactory cortex. These primary olfactory areas are located at the anterior-medial aspect of the amygdala and include the medial amygdala (MeA), cortical amygdala (CoA), and the periamygdaloid complex (PAC). The vast majority of research on the amygdala has focused on the larger basolateral and basomedial subregions, which are known to be involved in implicit learning, threat responses, and emotion. Fewer studies have focused on the MeA, CoA, and PAC, with most conducted in rodents. Therefore, our understanding of the functions of these amygdala subregions is limited, particularly in humans. Here, we first conducted a review of existing literature on the MeA, CoA, and PAC. We then used resting-state fMRI and unbiased k-means clustering techniques to show that the anatomical boundaries of human MeA, CoA, and PAC accurately parcellate based on their whole-brain resting connectivity patterns alone, suggesting that their functional networks are distinct, relative both to each other and to the amygdala subregions that do not receive input from the olfactory bulb. Finally, considering that distinct functional networks are suggestive of distinct functions, we examined the whole-brain resting network of each subregion and speculated on potential roles that each region may play in olfactory processing. Based on these analyses, we speculate that the MeA could potentially be involved in the generation of rapid motor responses to olfactory stimuli (including fight/flight), particularly in approach/avoid contexts. The CoA could potentially be involved in olfactory-related reward processing, including learning and memory of approach/avoid responses. The PAC could potentially be involved in the multisensory integration of olfactory information with other sensory systems. These speculations can be used to form the basis of future studies aimed at clarifying the olfactory functions of these under-studied primary olfactory areas.


2021 ◽  
pp. 851-861
Author(s):  
Kelly D. Flemming

This chapter briefly repeats key anatomic characteristics and then reviews clinical disorders affecting each cranial nerve in addition to the brainstem. More specifically, this chapter covers cranial nerves I, V, VII, and IX through XII plus the brainstem. The olfactory nerve is a special visceral afferent nerve that functions in the sense of smell. The axons of the olfactory receptor cells within the nasal cavity extend through the cribriform plate to the olfactory bulb. These olfactory receptor cell axons synapse with mitral cells in the olfactory bulb. Mitral cell axons project to the primary olfactory cortex and amygdala. The olfactory cortex interconnects with various autonomic and visceral centers.


2021 ◽  
Vol 11 (8) ◽  
pp. 1010
Author(s):  
Benoît Jobin ◽  
Benjamin Boller ◽  
Johannes Frasnelli

Olfactory decline is an early symptom of Alzheimer’s disease (AD) and is a predictor of conversion from mild cognitive impairment (MCI) to AD. Olfactory decline could reflect AD-related atrophy of structures related to the sense of smell. The aim of this study was to verify whether the presence of a clinical diagnosis of AD or MCI is associated with a volumetric decrease in the olfactory bulbs (OB) and the primary olfactory cortex (POC). We conducted two systematic reviews, one for each region and a meta-analysis. We collected articles from PsychNet, PubMed, Ebsco, and ProQuest databases. Results showed large and heterogeneous effects indicating smaller OB volumes in patients with AD (k = 6, g = −1.21, 95% CI [−2.19, −0.44]) and in patients with MCI compared to controls. There is also a trend for smaller POC in patients with AD or MCI compared to controls. Neuroanatomical structures involved in olfactory processing are smaller in AD and these volumetric reductions could be measured as early as the MCI stage.


Nature ◽  
2021 ◽  
Author(s):  
Carl E. Schoonover ◽  
Sarah N. Ohashi ◽  
Richard Axel ◽  
Andrew J. P. Fink

2021 ◽  
Vol 15 ◽  
Author(s):  
Alexander Wieck Fjaeldstad ◽  
Franz Stiller-Stut ◽  
Carsten Gleesborg ◽  
Morten L. Kringelbach ◽  
Thomas Hummel ◽  
...  

Olfactory perception is a complicated process involving multiple cortical and subcortical regions, of which the underlying brain dynamics are still not adequately mapped. Even in the definition of the olfactory primary cortex, there is a large degree of variation in parcellation templates used for investigating olfaction in neuroimaging studies. This complicates comparison between human olfactory neuroimaging studies. The present study aims to validate an olfactory parcellation template derived from both functional and anatomical data that applies structural connectivity (SC) to ensure robust connectivity to key secondary olfactory regions. Furthermore, exploratory analyses investigate if different olfactory parameters are associated with differences in the strength of connectivity of this structural olfactory fingerprint. By combining diffusion data with an anatomical atlas and advanced probabilistic tractography, we found that the olfactory parcellation had a robust SC network to key secondary olfactory regions. Furthermore, the study indicates that higher ratings of olfactory significance were associated with increased intra- and inter-hemispheric SC of the primary olfactory cortex. Taken together, these results suggest that the patterns of SC between the primary olfactory cortex and key secondary olfactory regions has potential to be used for investigating the nature of olfactory significance, hence strengthening the theory that individual differences in olfactory behaviour are encoded in the structural network fingerprint of the olfactory cortex.


2020 ◽  
Author(s):  
Carl E. Schoonover ◽  
Sarah N. Ohashi ◽  
Richard Axel ◽  
Andrew J.P. Fink

SummaryRepresentations of the external world in sensory cortices may define the identity of a stimulus and should therefore vary little over the life of the organism. In the olfactory system the primary olfactory cortex, piriform, is thought to determine odor identity1–6. We have performed electrophysiological recordings of single units maintained over weeks to examine the stability of odor representations in the mouse piriform cortex. We observed that odor representations drift over time, such that the performance of a linear classifier trained on the first recording day approaches chance levels after 32 days. Daily exposure to the same odorant slows the rate of drift, but when exposure is halted that rate increases once again. Moreover, behavioral salience does not stabilize odor representations. Continuous drift poses the question of the role of piriform in odor identification. This instability may reflect the unstructured connectivity of piriform7–15 and may be a property of other unstructured cortices.


2020 ◽  
Vol 31 (1) ◽  
pp. 159-168
Author(s):  
Moa G Peter ◽  
Peter Fransson ◽  
Gustav Mårtensson ◽  
Elbrich M Postma ◽  
Love Engström Nordin ◽  
...  

Abstract Congenital blindness is associated with atypical morphology and functional connectivity within and from visual cortical regions; changes that are hypothesized to originate from a lifelong absence of visual input and could be regarded as a general (re) organization principle of sensory cortices. Challenging this is the fact that individuals with congenital anosmia (lifelong olfactory sensory loss) display little to no morphological changes in the primary olfactory cortex. To determine whether olfactory input from birth is essential to establish and maintain normal functional connectivity in olfactory processing regions, akin to the visual system, we assessed differences in functional connectivity within the olfactory cortex between individuals with congenital anosmia (n = 33) and matched controls (n = 33). Specifically, we assessed differences in connectivity between core olfactory processing regions as well as differences in regional homogeneity and homotopic connectivity within the primary olfactory cortex. In contrast to congenital blindness, none of the analyses indicated atypical connectivity in individuals with congenital anosmia. In fact, post-hoc Bayesian analysis provided support for an absence of group differences. These results suggest that a lifelong absence of olfactory experience has a limited impact on the functional connectivity in the olfactory cortex, a finding that indicates a clear difference between sensory modalities in how sensory cortical regions develop.


Sign in / Sign up

Export Citation Format

Share Document