A Tangled Web of Inventions

Author(s):  
Subrata Dasgupta

On February 15, 1946, a giant of a machine called the ENIAC, an acronym for Electronic Numerical Integrator And Computer, was commissioned at a ceremony at the Moore School of Electrical Engineering at the University of Pennsylvania, Philadelphia. The name is noteworthy. We see that the word computer—to mean the machine and not the person—had cautiously entered the emerging vocabulary of computer culture. Bell Laboratories named one of its machines Complex Computer; another, Ballistic Computer (see Chapter 5, Section I ). Still, the embryonic world of computing was hesitant; the terms “calculator”, “calculating machine”, “computing machine”, and “computing engine” still prevailed. The ENIAC’s full name (which, of course, would never be used after the acronym was established) seemed, at last, to flaunt the fact that this machine had a definite identity, that it was a computer. The tale of the ENIAC is a fascinating tale in its own right, but it is also a very important tale. Computer scientists and engineers of later times may be ignorant about the Bell Laboratories machines, they may be hazy about the Harvard Mark series, they may have only an inkling about Babbage’s dream machines, but they will more than likely have heard about the ENIAC. Why was this so? What was it about the ENIAC that admits its story into the larger story? It was not the first electronic computer; the Colossus preceded the ENIAC by 2 years. True, no one outside the Bletchley Park community knew about the Colossus, but from a historical perspective, for historians writing about the state of computing in the 1940s, the Colossus clearly took precedence over the ENIAC. In fact (as we will soon see), there was another electronic computer built in America that preceded the ENIAC. Nor was the ENIAC the first programmable computer. Zuse’s Z3 and Aiken’s Harvard Mark I, as well as the Colossus, well preceded the ENIAC in this realm. As for that other Holy Grail, general purposeness, this was, as we have noted, an elusive target (see Chapter 6, Section III).

Digitized ◽  
2012 ◽  
Author(s):  
Peter J. Bentley

Your ideas, money, memories, and entertainment are dreams in the minds of computers. But the thoughts of each computer are not simple, they are layered like our own minds. Their lowest, most primitive layers are the instincts of the machine. Middle layers perform more general functions of its silicon mind. Higher layers think about overall concepts. Unlike us, the computer has languages for every layer. We can teach it new ideas by changing any one or all of its layers of thought. We can tell it to consider vast and convoluted concepts. But if we make a single mistake in our instructions, the mind of our digital slave may crash in a virtual epileptic fit. When our silicon students are so pedantic, how can we engineer their thoughts to make them reliable and trustworthy assistants? And if their thoughts become more complicated than anything we can imagine, how can we guarantee they will do what we want them to? . . . Light poured in through the large windows of the lecture room. The sound of scratching pens from nearly thirty distinguished engineers and scientists accompanied every word spoken by John Mauchly. One fellow by the name of Gard from the Wright Field’s Armament Laboratory seemed to be especially diligent, writing hundreds of pages of notes. It was Monday morning, a warm mid-summer day of 1946, some three years after his stimulating tea-time discussions with Turing. Claude Shannon was three weeks into the eight-week course at the Moore School of Electrical Engineering, in the University of Pennsylvania. It had been an honour to be one of the select few invited to hear lectures on designing electronic digital computers. This was the first ever course to be taught on computer science, and Shannon was finding many of the ideas highly stimulating. He’d recently learned a new word from Mauchly: ‘program’ used as a verb. To program an electronic computer was an interesting concept. He was also hearing about some of the politics: apparently two of the lecturers, Mauchly and his colleague Eckert, had resigned from the university just four months ago because of some form of disagreement.


Author(s):  
Thomas Haigh ◽  
Mark Priestley ◽  
Crispin Rope

This book explores the conception, design, construction, use, and afterlife of ENIAC, the first general purpose digital electronic computer. ENIAC was created and tested at the University of Pennsylvania from 1943 to 1946, then used at the Ballistic Research Laboratory in Aberdeen, Maryland until 1955. Unlike most discussion of early computers, this book focuses on ways in which ENIAC was used, and the relationship of its design to computational practice, particularly its use between 1948 and 1950 to conduct the first computerized Monte Caro simulations for Los Alamos. ENIAC’s first team of operators were all women, and the book probes their contribution to the machine’s achievements and the development of computer programming practice. ENIAC’s users changed its hardware and transformed its configuration over time, so that it eventually became the first computer to execute a modern program, defined by the authors as one following the “modern code paradigm” introduced in John von Neumann’s seminal 1945 “First Draft of a Report on the EDVAC.” They draw on new archival evidence to document the development of this idea and its relationship to work on ENIAC. They also use ENIAC to probe the construction of historical memory, looking at ways in which a bitter succession of legal battles around patent rights shaped later perceptions.


1979 ◽  
Vol 46 ◽  
pp. 368
Author(s):  
Clinton B. Ford

A “new charts program” for the Americal Association of Variable Star Observers was instigated in 1966 via the gift to the Association of the complete variable star observing records, charts, photographs, etc. of the late Prof. Charles P. Olivier of the University of Pennsylvania (USA). Adequate material covering about 60 variables, not previously charted by the AAVSO, was included in this original data, and was suitably charted in reproducible standard format.Since 1966, much additional information has been assembled from other sources, three Catalogs have been issued which list the new or revised charts produced, and which specify how copies of same may be obtained. The latest such Catalog is dated June 1978, and lists 670 different charts covering a total of 611 variables none of which was charted in reproducible standard form previous to 1966.


Sign in / Sign up

Export Citation Format

Share Document