Universality

Author(s):  
Mark Adler

This article deals with the universality of eigenvalue spacings, one of the basic characteristics of random matrices. It first discusses the heuristic meaning of universality before describing the standard universality classes (sine, Airy, Bessel) and their appearance in unitary, orthogonal, and symplectic ensembles. It then examines unitary matrix ensembles in more detail and shows that universality in these ensembles comes down to the convergence of the properly scaled eigenvalue correlation kernels. It also analyses the Riemann–Hilbert method, along with certain non-standard universality classes that arise at singular points in the limiting spectrum. Finally, it considers the limiting kernels for each of the three types of singular points, namely interior singular points, singular edge points, and exterior singular points.

Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 273 ◽  
Author(s):  
Daniel Nickelsen ◽  
Michael Kastner

We introduce structured random matrix ensembles, constructed to model many-body quantum systems with local interactions. These ensembles are employed to study equilibration of isolated many-body quantum systems, showing that rather complex matrix structures, well beyond Wigner's full or banded random matrices, are required to faithfully model equilibration times. Viewing the random matrices as connectivities of graphs, we analyse the resulting network of classical oscillators in Hilbert space with tools from network theory. One of these tools, called the maximum flow value, is found to be an excellent proxy for equilibration times. Since maximum flow values are less expensive to compute, they give access to approximate equilibration times for system sizes beyond those accessible by exact diagonalisation.


2015 ◽  
Vol 04 (04) ◽  
pp. 1550020 ◽  
Author(s):  
Eugene Strahov

We introduce and study a family of random processes with a discrete time related to products of random matrices. Such processes are formed by singular values of random matrix products, and the number of factors in a random matrix product plays a role of a discrete time. We consider in detail the case when the (squared) singular values of the initial random matrix form a polynomial ensemble, and the initial random matrix is multiplied by standard complex Gaussian matrices. In this case, we show that the random process is a discrete-time determinantal point process. For three special cases (the case when the initial random matrix is a standard complex Gaussian matrix, the case when it is a truncated unitary matrix, or the case when it is a standard complex Gaussian matrix with a source) we compute the dynamical correlation functions explicitly, and find the hard edge scaling limits of the correlation kernels. The proofs rely on the Eynard–Mehta theorem, and on contour integral representations for the correlation kernels suitable for an asymptotic analysis.


Nonlinearity ◽  
2000 ◽  
Vol 13 (5) ◽  
pp. 1439-1464 ◽  
Author(s):  
N S Witte ◽  
P J Forrester ◽  
Christopher M Cosgrove

2016 ◽  
Vol 28 (5) ◽  
pp. 873-891 ◽  
Author(s):  
Folkmar Bornemann ◽  
Peter J. Forrester

AbstractComplex Hermitian random matrices with a unitary symmetry can be distinguished by a weight function. When this is even, it is a known result that the distribution of the singular values can be decomposed as the superposition of two independent eigenvalue sequences distributed according to particular matrix ensembles with chiral unitary symmetry. We give decompositions of the distribution of singular values, and the decimation of the singular values – whereby only even, or odd, labels are observed – for real symmetric random matrices with an orthogonal symmetry, and even weight. This requires further specifying the functional form of the weight to one of three types – Gauss, symmetric Jacobi or Cauchy. Inter-relations between gap probabilities with orthogonal and unitary symmetry follow as a corollary. The Gauss case has appeared in a recent work of Bornemann and La Croix. The Cauchy case, when appropriately specialised and upon stereographic projection, gives decompositions for the analogue of the singular values for the circular unitary and circular orthogonal ensembles.


2015 ◽  
Vol 04 (04) ◽  
pp. 1550017 ◽  
Author(s):  
Tom Claeys ◽  
Arno B. J. Kuijlaars ◽  
Dong Wang

Let [Formula: see text] be a random matrix whose squared singular value density is a polynomial ensemble. We derive double contour integral formulas for the correlation kernels of the squared singular values of [Formula: see text] and [Formula: see text], where [Formula: see text] is a complex Ginibre matrix and [Formula: see text] is a truncated unitary matrix. We also consider the product of [Formula: see text] and several complex Ginibre/truncated unitary matrices. As an application, we derive the precise condition for the squared singular values of the product of several truncated unitary matrices to follow a polynomial ensemble. We also consider the sum [Formula: see text] where [Formula: see text] is a GUE matrix and [Formula: see text] is a random matrix whose eigenvalue density is a polynomial ensemble. We show that the eigenvalues of [Formula: see text] follow a polynomial ensemble whose correlation kernel can be expressed as a double contour integral. As an application, we point out a connection to the two-matrix model.


2011 ◽  
Vol 225-226 ◽  
pp. 21-25
Author(s):  
Jing Bing Yang ◽  
Hui Ding ◽  
Shu Dong Zhang

This paper proposes an image weak-edge detection method based on the combination of edge features and BP neural networks. Through analyzing the basic characteristics of the image edge points, we construct 8 groups 3-D feature vectors as the training sample set, combining with the learning function based on gradient descent momentum and the Levenberg-Marquardt training function, to train the BP neural network, further complete the image edge detection. Finally, compared with the traditional edge detection methods, the experimental results show that this method can detect the weak-edge and corner-edge much better.


Author(s):  
Eugene B Bogomolny

Abstract The barrier billiard is the simplest example of pseudo-integrable models with interesting and intricate classical and quantum properties. Using the Wiener-Hopf method it is demonstrated that quantum mechanics of a rectangular billiard with a barrier in the centre can be reduced to the investigation of a certain unitary matrix. Under heuristic assumptions this matrix is substituted by a special low-complexity random unitary matrix of independent interest. The main results of the paper are (i) spectral statistics of such billiards is insensitive to the barrier height and (ii) it is well described by the semi-Poisson distributions.


1990 ◽  
Vol 65 (19) ◽  
pp. 2325-2328 ◽  
Author(s):  
Georg Lenz ◽  
Fritz Haake

Sign in / Sign up

Export Citation Format

Share Document