THE PROBLEM OF NEURONAL REGENERATION IN THE CENTRAL NERVOUS SYSTEM

1943 ◽  
Vol 1 (7) ◽  
pp. 85-85
Author(s):  
W. E. Le Gros Clark
1960 ◽  
Vol 17 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Ruth Kerr Jakoby ◽  
Calvin C. Turbes ◽  
L. W. Freeman

2021 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Babatunde Oluwafemi Adetuyi ◽  
◽  
Pere-Ebi Yabrade Toloyai ◽  
Evelyn Tarela Ojugbeli ◽  
Oyetola Tolulope Oyebanjo ◽  
...  

The pathophysiological processes involved in neurodegenerative diseases have not been clearly defined. Nevertheless, a significant aspect of the proof focuses directly on the function of several mechanisms of inflammation. The immune system is represented in the central nervous system by the microglial cell capable of detecting harmful or foreign pathogens, and thus initiates self-activation and neuro-inflammatory processes via phagocytosis and cytokines release, to maintain the cellular microenvironment. Then, microglial cells can spawn an emphasis on persistent inflammation that sometimes precedes or promote the neurodegenerative processes. Hence, the neuro-inflammatory micro-environment turns toxic and damaging to the neuronal cell, leading to degeneration and release of several factors which trigger an inflammatory reaction of the microglia, activating the neurodegenerative cycle. The biomechanical properties of the brain, neuronal regeneration, and plasticity can be modified by reactive gliosis. Defining the inception and development of reactive microgliosis and astrogliosis is vital for better clinical treatments design.


2017 ◽  
Author(s):  
◽  
E. Díaz-Torres

The failure in the neuron regeneration in the central nervous system (CNS) in higher vertebrates, is a not completely solved problem, this limits the rehabilitation of many motor conducts after an injury in the spinal cord. In neuronal regeneration multiple factors are involved, between them those that induce the neurite outgrowth which has been studied to try to encourage the extension and reconnection of the injury neurons with their blanks. The regeneration of the CNS of leeches has been intensely studied because allows to approach the problem at different levels with different techniques. In this study the optical absorption spectrum of the CNS and the tissue of the leech H. officinalis was obtained, by using photoacoustic spectroscopy (PAS), in order to investigate the optimal wavelenghts for later irradiation of CNS cells and tissue of H. officinalis. The results of this study show that the CNS of these organisms absorbs in the region of 300 nm to 500 nm, and the tissue samples has a maximun of optical absorption near to 300 nm, besides were observed evident differences between the optical absorption spectra of CNS with injury and the control (without injury).


2017 ◽  
Author(s):  
◽  
E. Díaz-Torres

The failure in the neuron regeneration in the central nervous system (CNS) in higher vertebrates, is a not completely solved problem, this limits the rehabilitation of many motor conducts after an injury in the spinal cord. In neuronal regeneration multiple factors are involved, between them those that induce the neurite outgrowth which has been studied to try to encourage the extension and reconnection of the injury neurons with their blanks. The regeneration of the CNS of leeches has been intensely studied because allows to approach the problem at different levels with different techniques. In this study the optical absorption spectrum of the CNS and the tissue of the leech H. officinalis was obtained, by using photoacoustic spectroscopy (PAS), in order to investigate the optimal wavelenghts for later irradiation of CNS cells and tissue of H. officinalis. The results of this study show that the CNS of these organisms absorbs in the region of 300 nm to 500 nm, and the tissue samples has a maximun of optical absorption near to 300 nm, besides were observed evident differences between the optical absorption spectra of CNS with injury and the control (without injury).


Sign in / Sign up

Export Citation Format

Share Document