Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish

2011 ◽  
Vol 34 (6) ◽  
pp. 917-929 ◽  
Author(s):  
Günther K. H. Zupanc ◽  
Ruxandra F. Sîrbulescu
2021 ◽  
Vol 224 (8) ◽  
Author(s):  
Günther K. H. Zupanc

ABSTRACT Adult neurogenesis, the generation of functional neurons from adult neural stem cells in the central nervous system (CNS), is widespread, and perhaps universal, among vertebrates. This phenomenon is more pronounced in teleost fish than in any other vertebrate taxon. There are up to 100 neurogenic sites in the adult teleost brain. New cells, including neurons and glia, arise from neural stem cells harbored both in neurogenic niches and outside these niches (such as the ependymal layer and parenchyma in the spinal cord, respectively). At least some, but not all, of the stem cells are of astrocytic identity. Aging appears to lead to stem cell attrition in fish that exhibit determinate body growth but not in those with indeterminate growth. At least in some areas of the CNS, the activity of the neural stem cells results in additive neurogenesis or gliogenesis – tissue growth by net addition of cells. Mathematical and computational modeling has identified three factors to be crucial for sustained tissue growth and correct formation of CNS structures: symmetric stem cell division, cell death and cell drift due to population pressure. It is hypothesized that neurogenesis in the CNS is driven by continued growth of corresponding muscle fibers and sensory receptor cells in the periphery to ensure a constant ratio of peripheral versus central elements. This ‘numerical matching hypothesis’ can explain why neurogenesis has ceased in most parts of the adult CNS during the evolution of mammals, which show determinate growth.


1960 ◽  
Vol 17 (3) ◽  
pp. 385-393 ◽  
Author(s):  
Ruth Kerr Jakoby ◽  
Calvin C. Turbes ◽  
L. W. Freeman

2021 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Babatunde Oluwafemi Adetuyi ◽  
◽  
Pere-Ebi Yabrade Toloyai ◽  
Evelyn Tarela Ojugbeli ◽  
Oyetola Tolulope Oyebanjo ◽  
...  

The pathophysiological processes involved in neurodegenerative diseases have not been clearly defined. Nevertheless, a significant aspect of the proof focuses directly on the function of several mechanisms of inflammation. The immune system is represented in the central nervous system by the microglial cell capable of detecting harmful or foreign pathogens, and thus initiates self-activation and neuro-inflammatory processes via phagocytosis and cytokines release, to maintain the cellular microenvironment. Then, microglial cells can spawn an emphasis on persistent inflammation that sometimes precedes or promote the neurodegenerative processes. Hence, the neuro-inflammatory micro-environment turns toxic and damaging to the neuronal cell, leading to degeneration and release of several factors which trigger an inflammatory reaction of the microglia, activating the neurodegenerative cycle. The biomechanical properties of the brain, neuronal regeneration, and plasticity can be modified by reactive gliosis. Defining the inception and development of reactive microgliosis and astrogliosis is vital for better clinical treatments design.


2005 ◽  
Vol 52 (2) ◽  
pp. 359-372 ◽  
Author(s):  
Robert K Filipkowski ◽  
Anna Kiryk ◽  
Anna Kowalczyk ◽  
Leszek Kaczmarek

In the central nervous system (CNS) generation of new neurons continues throughout adulthood, when it is limited to the olfactory bulb and hippocampus. The knowledge regarding the function of newly-generated neurons remains limited and is vigorously investigated using diverse approaches. Among these are genetically modified mice, most of them of knock-out type (KO). Results from 23 diverse KO mouse models demonstrate the importance of particular proteins (growth factors, nitric oxide synthases, receptors, cyclins/cyclin-associated proteins, transcription factors, etc.) in adult neurogenesis (ANGE) as well as separate it from developmental neurogenesis. These results bring us closer to revealing the function of newly generated neurons in adult brains.


1975 ◽  
Vol 63 (3) ◽  
pp. 627-645
Author(s):  
B. S. Lanchester ◽  
R. F. Mark

1. The path, eye and body movements of a teleost fish (the leatherjacket Acanthaluteres spilomelanurus) approaching and taking food were measured by cinematography. 2. Fixation of the food by movement of the eyes is an invariable feature of the approach. The eyes then remain aligned with the target while the body moves forward and round to bring the mouth to the food. 3. When pursuing pieces of food moving vertically at constant velocity through the water these fish normally trace out the pathway that can be calculated by assuming the fish aims constantly at the food. Predictive pathways that imply anticipation of the point of intersection with the food are not regularly seen. 4. Deviations from pursuit occur sporadically, usually in the direction of a predictive path, particularly when the fish approach falling food from below. 5. The geometry of the situation suggests that predictive paths may sometimes be generated if the alignment of eye and body during the pursuit of moving food can be delayed. In approaches from below this may be because forward movement of the fish would tend to stabilize the image of the falling food in the retina. 6. We suggest that a simple linked control system using both eye and body movements to fixate retinal images will on occasions generate predictive pathways without any need for the central nervous system to calculate them in advance.


Sign in / Sign up

Export Citation Format

Share Document