Crystal Structure of 3-Isopropylmalate Dehydrogenase from the Moderate Facultative Thermophile, Bacillus coagulans: Two Strategies for Thermostabilization of Protein Structures

1997 ◽  
Vol 122 (6) ◽  
pp. 1092-1104 ◽  
Author(s):  
D. Tsuchiya ◽  
T. Sekiguchi ◽  
A. Takenaka
2004 ◽  
Vol 37 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Masaki Kojima ◽  
Alexander A. Timchenko ◽  
Junichi Higo ◽  
Kazuki Ito ◽  
Hiroshi Kihara ◽  
...  

A new algorithm to refine protein structures in solution from small-angle X-ray scattering (SAXS) data was developed based on restrained molecular dynamics (MD). In the method, the sum of squared differences between calculated and observed SAXS intensities was used as a constraint energy function, and the calculation was started from given atomic coordinates, such as those of the crystal. In order to reduce the contribution of the hydration effect to the deviation from the experimental (objective) curve during the dynamics, and purely as an estimate of the efficiency of the algorithm, the calculation was first performed assuming the SAXS curve corresponding to the crystal structure as the objective curve. Next, the calculation was carried out with `real' experimental data, which yielded a structure that satisfied the experimental SAXS curve well. The SAXS data for ribonuclease T1, a single-chain globular protein, were used for the calculation, along with its crystal structure. The results showed that the present algorithm was very effective in the refinement and adjustment of the initial structure so that it could satisfy the objective SAXS data.


2005 ◽  
Vol 38 (2) ◽  
pp. 381-388 ◽  
Author(s):  
Maria C. Burla ◽  
Rocco Caliandro ◽  
Mercedes Camalli ◽  
Benedetta Carrozzini ◽  
Giovanni L. Cascarano ◽  
...  

SIR2004is the evolution of theSIR2002program [Burla, Camalli, Carrozzini, Cascarano, Giacovazzo, Polidori & Spagna (2003).J. Appl. Cryst.36, 1103]. It is devoted to the solution of crystal structures by direct and Patterson methods. Several new features implemented inSIR2004make this program efficient: it is able to solveab initioboth small/medium-size structures as well as macromolecules (up to 2000 atoms in the asymmetric unit). In favourable circumstances, the program is also able to solve protein structures with data resolution up to 1.4–1.5 Å, and to provide interpretable electron density maps. A powerful user-friendly graphical interface is provided.


2017 ◽  
Vol 114 (8) ◽  
pp. 2066-2071 ◽  
Author(s):  
Bingfa Sun ◽  
Priti Bachhawat ◽  
Matthew Ling-Hon Chu ◽  
Martyn Wood ◽  
Tom Ceska ◽  
...  

The adenosine A2Areceptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2Areceptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyld-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2Areceptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.


2009 ◽  
Vol 17 (22) ◽  
pp. 7789-7794 ◽  
Author(s):  
Eriko Nango ◽  
Takashi Yamamoto ◽  
Takashi Kumasaka ◽  
Tadashi Eguchi

Author(s):  
Yingying Liu ◽  
Yunrong Gao ◽  
Defeng Li ◽  
Joy Fleming ◽  
Honglin Li ◽  
...  

Rv3899c is a hypothetical protein fromMycobacterium tuberculosiswhich is conserved across mycobacteria. It is predicted to be secreted and has been found in culture filtrates. It has been proposed as a potential vaccine candidate; however, its biological function is unknown. Here, the global structure of Rv3899c184–410, a fragment of Rv3899c, is reported. The structure resembles the shell of a sea snail, and its N- and C-termini form two relatively independent compact domains: an α/β/α sandwich folding domain and an α-helix bundle domain. There are no reported protein structures for any Rv3899c homologues; this structure provides the first structural glimpse of a new protein family consisting of Rv3899c and its homologues.


2010 ◽  
Vol 66 (8) ◽  
pp. 889-900 ◽  
Author(s):  
Frank Zucker ◽  
P. Christoph Champ ◽  
Ethan A. Merritt

The use of TLS (translation/libration/screw) models to describe anisotropic displacement of atoms within a protein crystal structure has become increasingly common. These models may be used purely as an improved methodology for crystallographic refinement or as the basis for analyzing inter-domain and other large-scale motions implied by the crystal structure. In either case it is desirable to validate that the crystallographic model, including the TLS description of anisotropy, conforms to our best understanding of protein structures and their modes of flexibility. A set of validation tests has been implemented that can be integrated into ongoing crystallographic refinement or run afterwards to evaluate a previously refined structure. In either case validation can serve to increase confidence that the model is correct, to highlight aspects of the model that may be improved or to strengthen the evidence supporting specific modes of flexibility inferred from the refined TLS model. Automated validation checks have been added to thePARVATIandTLSMDweb servers and incorporated into theCCP4iuser interface.


2008 ◽  
Vol 36 (4) ◽  
pp. 771-775 ◽  
Author(s):  
Mark J. Fogg ◽  
Anthony J. Wilkinson

In recent times, there has been a large increase in the number of protein structures deposited in the Protein Data Bank. Structural genomics initiatives have contributed to this expansion through their focus on high-throughput structural determination. This has fuelled advances in many of the techniques in the pipeline from gene to protein to crystal to structure. These include ligation-independent cloning methods, parallel purification systems, robotic crystallization devices and automated methods of crystal identification, data collection and, in some cases, structure solution. Some of these advances are described and discussed briefly with an emphasis on activities in the York Structural Biology Laboratory through its participation in the Structural Proteomics in Europe consortium.


IUCrJ ◽  
2013 ◽  
Vol 1 (1) ◽  
pp. 74-81 ◽  
Author(s):  
Manickam Gurusaran ◽  
Mani Shankar ◽  
Raju Nagarajan ◽  
John R. Helliwell ◽  
Kanagaraj Sekar

The power of X-ray crystal structure analysis as a technique is to `see where the atoms are'. The results are extensively used by a wide variety of research communities. However, this `seeing where the atoms are' can give a false sense of security unless the precision of the placement of the atoms has been taken into account. Indeed, the presentation of bond distances and angles to a false precision (i.e.to too many decimal places) is commonplace. This article has three themes. Firstly, a basis for a proper representation of protein crystal structure results is detailed and demonstrated with respect to analyses of Protein Data Bank entries. The basis for establishing the precision of placement of each atom in a protein crystal structure is non-trivial. Secondly, a knowledge base harnessing such a descriptor of precision is presented. It is applied here to the case of salt bridges,i.e.ion pairs, in protein structures; this is the most fundamental place to start with such structure-precision representations since salt bridges are one of the tenets of protein structure stability. Ion pairs also play a central role in protein oligomerization, molecular recognition of ligands and substrates, allosteric regulation, domain motion and α-helix capping. A new knowledge base, SBPS (Salt Bridges in Protein Structures), takes these structural precisions into account and is the first of its kind. The third theme of the article is to indicate natural extensions of the need for such a description of precision, such as those involving metalloproteins and the determination of the protonation states of ionizable amino acids. Overall, it is also noted that this work and these examples are also relevant to protein three-dimensional structure molecular graphics software.


Sign in / Sign up

Export Citation Format

Share Document