The Structure and Function of Ribonuclease T1: XVI. Isolation and Amino Acid Sequences of Peptic Peptides from Heat-denatured Ribonuclease T1*

1971 ◽  
Vol 70 (5) ◽  
pp. 803-815 ◽  
Author(s):  
Kenji TAKAHASHI
1997 ◽  
Vol 75 (6) ◽  
pp. 687-696 ◽  
Author(s):  
Tamo Fukamizo ◽  
Ryszard Brzezinski

Novel information on the structure and function of chitosanase, which hydrolyzes the beta -1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation. Key words: chitosanase, amino acid sequence, overexpression system, reaction mechanism, site-directed mutagenesis.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
J. Santiago Mejia ◽  
Erik N. Arthun ◽  
Richard G. Titus

One approach to identify epitopes that could be used in the design of vaccines to control several arthropod-borne diseases simultaneously is to look for common structural features in the secretome of the pathogens that cause them. Using a novel bioinformatics technique, cysteine-abundance and distribution analysis, we found that many different proteins secreted by several arthropod-borne pathogens, includingPlasmodium falciparum, Borrelia burgdorferi, and eight species of Proteobacteria, are devoid of cysteine residues. The identification of three cysteine-abundance and distribution patterns in several families of proteins secreted by pathogenic and nonpathogenic Proteobacteria, and not found when the amino acid analyzed was tryptophan, provides evidence of forces restricting the content of cysteine residues in microbial proteins during evolution. We discuss these findings in the context of protein structure and function, antigenicity and immunogenicity, and host-parasite relationships.


1996 ◽  
Vol 135 (3) ◽  
pp. 673-687 ◽  
Author(s):  
A J Kreuz ◽  
A Simcox ◽  
D Maughan

Drosophila indirect flight muscle (IFM) contains two different types of tropomyosin: a standard 284-amino acid muscle tropomyosin, Ifm-TmI, encoded by the TmI gene, and two > 400 amino acid tropomyosins, TnH-33 and TnH-34, encoded by TmII. The two IFM-specific TnH isoforms are unique tropomyosins with a COOH-terminal extension of approximately 200 residues which is hydrophobic and rich in prolines. Previous analysis of a hypomorphic TmI mutant, Ifm(3)3, demonstrated that Ifm-TmI is necessary for proper myofibrillar assembly, but no null TmI mutant or TmII mutant which affects the TnH isoforms have been reported. In the current report, we show that four flightless mutants (Warmke et al., 1989) are alleles of TmI, and characterize a deficiency which deletes both TmI and TmII. We find that haploidy of TmI causes myofibrillar disruptions and flightless behavior, but that haploidy of TmII causes neither. Single fiber mechanics demonstrates that power output is much lower in the TmI haploid line (32% of wild-type) than in the TmII haploid line (73% of wild-type). In myofibers nearly depleted of Ifm-TmI, net power output is virtually abolished (< 1% of wild-type) despite the presence of an organized fibrillar core (approximately 20% of wild-type). The results suggest Ifm-TmI (the standard tropomyosin) plays a key role in fiber structure, power production, and flight, with reduced Ifm-TmI expression producing corresponding changes of IFM structure and function. In contrast, reduced expression of the TnH isoforms has an unexpectedly mild effect on IFM structure and function.


Sign in / Sign up

Export Citation Format

Share Document