Hormonal Effects on the Sulfation of Sulfated Glycoprotein in a Particulate Fraction of the Endometrium of Rabbit Uterus1

1981 ◽  
Vol 89 (6) ◽  
pp. 1815-1819 ◽  
Author(s):  
Mamoru ISEMURA ◽  
Hiroshi MUNAKATA ◽  
Zensaku YOSIZAWA
1978 ◽  
Vol 83 (2) ◽  
pp. 537-542 ◽  
Author(s):  
Reiko YAMAMOTO ◽  
Hiroshi MUNAKATA ◽  
Masahiko YAMAMOTO ◽  
Zensaku YOSIZAWA

1963 ◽  
Vol 43 (1) ◽  
pp. 110-118 ◽  
Author(s):  
R. Ekholm ◽  
T. Zelander ◽  
P.-S. Agrell

ABSTRACT Guinea pigs, kept on a iodine-sufficient diet, were injected with Na131I and the thyroids excised from 45 seconds to 5 days later. The thyroid tissue was homogenized and separated into a combined nuclear-mitochondrial-microsomal fraction and a supernatant fraction by centrifugation at 140 000 g for one hour. Protein bound 131iodine (PB131I) and free 131iodide were determined in the fractions and the PB131I was analysed for monoiodotyrosine (MIT), diiodotyrosine (DIT) and thyroxine after hydrolysis of PB131I. As early as only 20 minutes after the Na131I-injection almost 100% of the particulate fraction 131I was protein bound. In the supernatant fraction the protein binding was somewhat less rapid and PB131I values above 90% of total supernatant 131I were not found until 3 hours after the injection. In all experiments the total amount of PB131I was higher in the supernatant than in the corresponding particulate fraction. The ratio between supernatant PB131I and pellet PB131I was lower in experiments up to 3 minutes and from 2 to 5 days than in experiments of 6 minutes to 20 hours. Hydrolysis of PB131I yielded, even in the shortest experiments, both MIT and DIT. The DIT/MIT ratio was lower in the experiments up to 2 hours than in those of 3 hours and over.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 281-289 ◽  
Author(s):  
Dick H. Eikelboom ◽  
Andreas Andreadakis ◽  
Kjaer Andreasen

A joint EU research project aimed at solving activated sludge bulking in nutrient removal plants was initiated in 1993. The project started with a survey of the size and composition of the filamentous population in nutrient removal plants in Denmark, Germany, Greece and the Netherlands. The results show that biological nutrient removal process conditions indeed favour filamentous microorganisms in their competition with floc forming organisms. An increase in the size of the filamentous population resulted in a deterioration of the settling properties of the biomass, except for plants with Bio-P removal conditions. It is assumed that in the latter case the dense clusters of Bio-P bacteria increase the weight of the flocs, and compensate for the effect of the larger number of filaments. Although exceptions frequently occur, the following sequence in decreasing filamentous organism population size was observed for the process conditions indicated: - completely mixed + simultaneous denitrification; - completely mixed + intermittent aeration/denitrification; - alternating anoxic/oxic process conditions, with an anaerobic tank for biological phosphate removal (Bio-Denipho); - alternating anoxic/oxic process conditions (Bio-Denitro); - predenitrification The surveys provided little information about the effect of nutrient removal in plants with plug flow aeration basins. Simultaneous precipitation with aluminium salts nearly always resulted in a low number of filaments and a good settling sludge. The size of the filamentous organism population showed a seasonal pattern with a maximum in winter/early spring and a minimum during summer (in Greece: during autumn). This seasonal variation is primarily caused by the effect of the season on the population sizes of M. parvicella, N. limicola and Type 0092. M. parvicella is by far the most important filamentous species in nutrient removal plants. In Denmark only, Type 0041 also frequently dominates the filamentous population, but seldom causes severe bulking. Considering their frequency of occurrence, approx. 10 other filamentous micro-organisms are of minor importance. Growth of some of these species, viz. those which use soluble substrate, can be prevented by the introduction of Bio-P process conditions. M. parvicella and Type 0041 (and probably also Actinomycetes and the Types 1851 and 0092) seem to compete for the same substrates i.e. the influent particulate fraction. Most of the differences in composition of the filamentous microorganism population can be explained by whether or not premixing of influent and recycled sludge is used. In general, premixing for a short period of time followed by anoxic conditions favours Type 0041. M. parvicella seems to proliferate if the particulate fraction is first hydrolysed or if it enters the plant via an oxic zone. It is concluded that bulking in nutrient removal plants is mainly caused by filamentous species requiring the particulate fraction for their growth.


Sign in / Sign up

Export Citation Format

Share Document