Sex-Related Differences in Meiotic Recombination Frequency in Pinus taeda

1995 ◽  
Vol 86 (2) ◽  
pp. 157-158 ◽  
Author(s):  
A. T. Groover ◽  
C. G. Williams ◽  
M. E. Devey ◽  
J. M. Lee ◽  
D. B. Neale
BMC Biology ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Ales Pecinka ◽  
Wei Fang ◽  
Marc Rehmsmeier ◽  
Avraham A Levy ◽  
Ortrun Mittelsten Scheid

Author(s):  
Ou Fang ◽  
Lin Wang ◽  
Yuxin Zhang ◽  
Jixuan Yang ◽  
Qin Tao ◽  
...  

Abstract Genetic recombination characterized by reciprocal exchange of genes on paired homologous chromosomes is the most prominent event in meiosis of almost all sexually reproductive organisms. It contributes to genome stability by ensuring the balanced segregation of paired homologs in meiosis, and it is also the major driving factor in generating genetic variation for natural and artificial selection. Meiotic recombination is subjected to the control of a highly stringent and complex regulating process and meiotic recombination frequency (MRF) may be affected by biological and abiotic factors such as sex, gene density, nucleotide content, and chemical/temperature treatments, having motivated tremendous researches for artificially manipulating MRF. Whether genome polyploidization would lead to a significant change in MRF has attracted both historical and recent research interests; however, tackling this fundamental question is methodologically challenging due to the lack of appropriate methods for tetrasomic genetic analysis, thus has led to controversial conclusions in the literature. This article presents a comprehensive and rigorous survey of genome duplication-mediated change in MRF using Saccharomyces cerevisiae as a eukaryotic model. It demonstrates that genome duplication can lead to consistently significant increase in MRF and rate of crossovers across all 16 chromosomes of S. cerevisiae, including both cold and hot spots of MRF. This ploidy-driven change in MRF is associated with weakened recombination interference, enhanced double-strand break density, and loosened chromatin histone occupation. The study illuminates a significant evolutionary feature of genome duplication and opens an opportunity to accelerate response to artificial and natural selection through polyploidization.


BMC Biology ◽  
2012 ◽  
Vol 10 (1) ◽  
pp. 33 ◽  
Author(s):  
Ales Pecinka ◽  
Wei Fang ◽  
Marc Rehmsmeier ◽  
Avraham A Levy ◽  
Ortrun Mittelsten Scheid

Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1167
Author(s):  
Svetlana R. Strelnikova ◽  
Anastasiya A. Krinitsina ◽  
Roman A. Komakhin

In plant breeding, the ability to manipulate meiotic recombination aids in the efficient construction of new allelic compositions of chromosomes and facilitates gene transfer from wild relatives of crop plants. The DNA mismatch repair system antagonizes meiotic recombination. In this research, a trial was conducted to evaluate transgenic tomato plants carrying an RNA interference (RNAi) construct designed to inhibit the expression of the mismatch repair MSH2 gene. To drive the RNAi construct, we used either a pro-SmAMP2 promoter from Stellaria media ANTIMICROBIAL PEPTIDE2 or a Cauliflower mosaic virus 35S promoter (CaMV35S). The results of real-time PCR showed that, with a 16 h light/8 h dark photoperiod, MSH2-RNAi tomato transgenic plants exhibited MSH2 gene transcript contents ranging from 0% to 3% in the leaves, relative to untransformed controls. However, with this lighting mode, the MSH2-RNAi transgenic plants grew slowly, flowered poorly, and did not form seed sets. During cultivation with a 12 h light/12 h dark photoperiod, MSH2-RNAi transgenic plants exhibited MSH2 gene transcript contents ranging from 3% to 42%, relative to untransformed controls. Under these conditions, F1 hybrid seed sets formed for most of the MSH2-RNAi transgenic plants with the RNAi construct driven by the CaMV35S promoter, and for one transformant with the RNAi construct driven by the pro-SmAMP2 promoter. Under conditions of a 12 h light/12 h dark photoperiod, most of the F1 transgenic hybrids showed MSH2 gene transcript contents ranging from 3% to 34% and formed F2 offspring sets, which made it possible to assess the meiotic recombination frequency. We showed that the effective inhibition of MSH2 in MSH2-RNAi tomato transgenic plants is not associated with an increase in meiotic recombination compared to the control, but it stimulates the sterility of plants. It was established that the expression of the MSH2 gene in tomato plants is about 50 times higher with a 12 h light/12 h dark than with a 16 h light/8 h dark photoperiod. It is discussed that, in Solanum lycopersicum tomato plants, which are not sensitive to the day length for flowering, changing the lighting time may be a means of controlling the meiotic recombination frequency within certain limits.


2012 ◽  
Vol 48 (1) ◽  
pp. 23-31 ◽  
Author(s):  
R. A. Komakhin ◽  
V. V. Komakhina ◽  
N. A. Milyukova ◽  
A. A. Zhuchenko

2018 ◽  
Author(s):  
Dmitriy Li ◽  
Marianne Rocl ◽  
Raif Yuecel ◽  
Alexander Lorenz

AbstractSchizosaccharomyces pombe, also known as fission yeast, is an established model for studying chromosome biological processes. Over the years research employing fission yeast has made important contributions to our knowledge about chromosome segregation during meiosis, as well as meiotic recombination and its regulation. Quantification of meiotic recombination frequency is not a straightforward undertaking, either requiring viable progeny for a genetic plating assay, or relying on laborious Southern blot analysis of recombination intermediates. Neither of these methods lends itself to high-throughput screens to identify novel meiotic factors. Here, we establish visual assays novel to Sz. pombe for characterizing chromosome segregation and meiotic recombination phenotypes. Genes expressing red, yellow, and/or cyan fluorophores from spore-autonomous promoters have been integrated into the fission yeast genomes, either close to the centromere of chromosome I to monitor chromosome segregation, or on the arm of chromosome III to form a genetic interval at which recombination frequency can be determined. The visual recombination assay allows straightforward and immediate assessment of the genetic outcome of a single meiosis by epi-fluorescence microscopy without requiring tetrad dissection. We also demonstrate that the recombination frequency analysis can be automatized by utilizing imaging flow cytometry to enable high-throughput screens. These assays have several advantages over traditional methods for analysing meiotic phenotypes.


Sign in / Sign up

Export Citation Format

Share Document