High-resolution freeze-etching replica images of the disk and the plasma membrane surfaces in purified bovine rod outer segments

2000 ◽  
Vol 49 (5) ◽  
pp. 691-697 ◽  
Author(s):  
N. Kajimura ◽  
Y. Harada ◽  
J. Usukura
1973 ◽  
Vol 56 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Juan I. Korenbrot ◽  
Dennis T. Brown ◽  
Richard A. Cone

Freshly isolated frog rod outer segments are sensitive osmometers which retain their photosensitivity; their osmotic behavior reveals essentially the same light-sensitive Na+ influx observed electrophysiologically in the intact receptor cell. Using appropriate osmotic conditions we have examined freeze-etch replicas of freshly isolated outer segments to identify the membrane which regulates the flow of water and ions. Under isosmotic conditions we find that the disc to disc repeat distance is almost exactly twice the thickness of a disc. This ratio appears to be the same in a variety of vertebrate rod outer segments and can be reliably measured in freeze-etch images. Under all our osmotic conditions the discs appear nearly collapsed. However, when the length of the outer segment is reduced by hyperosmotic shocks the discs move closer together. This markedly reduces the ratio of repeat distance to disc thickness since disc thickness remains essentially constant. Thus, the length reduction of isolated outer segments after hyperosmotic shocks primarily results from reduction of the extradisc volume. Since the discs are free floating and since they undergo negligibly small changes in volume, the plasma membrane alone must be primarily responsible for regulating the water flux and the light-sensitive Na+ influx in freshly isolated outer segments. On this basis we calculate, from the osmotic behavior, that the plasma membrane of frog rod outer segment has a Na+ permeability constant of about 2.8 x 10-6 cm/s and an osmotic permeability coefficient of greater than 2 x 10-3 cm/s.


1997 ◽  
Vol 64 (2) ◽  
pp. 279-282 ◽  
Author(s):  
STEVEN J. FLIESLER ◽  
KATHLEEN BOESZE-BATTAGLIA ◽  
ZOPHIA PAW ◽  
R.KENNEDY KELLER ◽  
ARLENE D. ALBERT

1992 ◽  
Vol 116 (3) ◽  
pp. 659-667 ◽  
Author(s):  
K Arikawa ◽  
L L Molday ◽  
R S Molday ◽  
D S Williams

The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.


Author(s):  
Pedro Pinto da Silva

I will describe a new method — fracture-flip — that uses commercially available equipment to produce extended views of cell and membrane surfaces. The resolution of this new method permits the routine identification of surface structures down to 5 nm diameter. Moreover, in contrast to freeze-etching/deep-etching, extended views are easily obtained.Conceptally, fracture-flip derives from label-fracture, another method developed in my laboratory. With label-fracture we showed that, after freeze-fracture, the exoplasmic (E) halves of cell membranes are stabilized by, and remain attached to, their platinum/carbon replicas. This allows the observation of co-incident views of the Pt/C replica of the E face, and of the distribution of colloidal gold labeled receptors or antigens. This is the sequence of steps in fracture-flip:


1983 ◽  
Vol 97 (5) ◽  
pp. 1452-1458 ◽  
Author(s):  
J Aggeler ◽  
R Takemura ◽  
Z Werb

We obtained high-resolution topographical information about the distribution of clathrin and cytoskeletal filaments on cytoplasmic membrane surfaces of macrophages spreading onto glass coverslips by both critical-point drying of broken-open cells and preparation of rotary platinum replicas. Irregular patches of the adherent ventral surface of the plasma membrane were exposed in these cells, and large areas of these exposed membranes were covered with clathrin-coated patches, pits, and vesicles. Various amounts of cytoskeleton were attached to the plasma membranes of these spreading cells, either as distinct starlike foci, or as individual filaments and bundles radiating out from the cytoskeletal meshwork. In newly adherent cells a well developed Golgi-GERL complex, characterized by smooth, dish-like cisternae associated with rough endoplasmic reticulum, was observed. There were many coated vesicles budding off from the Golgi cisternae, and these were predominantly of the large type (150 nm) usually associated with the plasma membrane. In critical-point-dried samples, both cytoskeleton and membranes were preserved in detail comparable to that of quick-frozen samples, after appropriate fixation. Rotary replication of critical-point-dried cells provides a rapid, easily controlled, and generally easy to perform method for obtaining samples of exposed membrane large enough to permit quantification of membrane-associated clathrin and cytoskeleton under various experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document