Coupling of malate decarboxylation to CO2 fixation and the reduction of 3-phosphoglyceric acid in corn bundle sheath cells12

1974 ◽  
Vol 52 (12) ◽  
pp. 2599-2605 ◽  
Author(s):  
C. K. M. Rathnam ◽  
V. S. R. Das

The intercellular and intracellular distributions of nitrate assimilating enzymes were studied. Nitrate reductase was found to be localized on the chloroplast envelope membranes. The chloroplastic NADPH – glutamate dehydrogenase was concentrated in the mesophyll cells. The extrachloroplastic NADH – glutamate dehydrogenase was localized in the bundle sheath cells. Glutamate synthesized in the mesophyll chloroplasts was interpreted to be utilized exclusively in the synthesis of aspartate, while in the bundle sheath cells it was thought to be consumed in other cellular metabolic processes. Based on the results, a scheme is proposed to account for the nitrate metabolism in the leaves of Eleusine coracana Gaertn. in relation to its aspartate-type C-4 pathway of photosynthesis.


1995 ◽  
Vol 108 (1) ◽  
pp. 173-181 ◽  
Author(s):  
M. D. Hatch ◽  
A. Agostino ◽  
CLD. Jenkins

Weed Science ◽  
1983 ◽  
Vol 31 (1) ◽  
pp. 131-136 ◽  
Author(s):  
C. Dennis Elmore ◽  
Rex N. Paul

Spotted spurge (Euphorbia maculataL.) and prostrate spurge (E. supinaRaf.), both in subgenusChamesyce,were examined by light and electron microscopy using a caffeine - fixation technique to sequester the phenolic pools intercellularly. Both species have typical dicotyledon-type Kranz anatomy. Sequestered phenolic pools were located in vacuoles in epidermal and mesophyll cells. Only in spotted spurge, however, were additional phenolic pools formed in bundle - sheath cells. This study was undertaken because allelopathy has been demonstrated in prostrate spurge and because phenolic compounds have been implicated in allelopathy. These results would indicate that spotted spurge should also be allelopathic.


Sign in / Sign up

Export Citation Format

Share Document