scholarly journals Black-Hole X-Ray Transients: The Effect of Irradiation on Time-Dependent Accretion Disk Structure

1999 ◽  
Vol 51 (3) ◽  
pp. 393-404 ◽  
Author(s):  
Soon-Wook Kim ◽  
J. Craig Wheeler ◽  
Shin Mineshige
1996 ◽  
Vol 158 ◽  
pp. 139-140
Author(s):  
S.-W. Kim ◽  
J. C. Wheeler ◽  
S. Mineshige

We present time-dependent, irradiated, accretion disk models for the black hole X-ray novae in the first hundred days of the dwarf nova-like outbursts, including the rise, precursor, maximum and the secondary re-flare. This work is based on the disk instability model (Kim, Mineshige & Wheeler 1996, Kim, Wheeler & Mineshige 1996). The model is reasonably consistent with the observed optical light curves. The irradiators are the central hot region around the black hole, and the corona or chromosphere above the accretion disk. In addition, we include the time-dependent shadowing effect and consequent blocking of the outer portions of the disk from the central irradiator. We find the stagnation phenomenon whereby the disk stays in the intermediate temperature stage between the hot and cool state. This can explain the recently discovered optical precursor rise prior to the maximum light in Nova Sco 1994 (Bailyn et al. 1995: see Fig. 1). We suggest the secondary re-flare after the maximum is due to the coupled effects of the irradiation and stagnation. In the model, the stagnation phenomenon during the rise results from the partial ionization and molecular opacity. In addition, we find irradiation-induced stagnation during the decay phase, which is consistent with the observed secondary re-flare in X-ray novae (see Fig. 1). In the overall evolution of model outbursts in the first hundred days, the outer disk is blocked from the irradiation and, in turn, the companion star may not be strongly irradiated. This suggests that there is no appreciable increase of mass transfer rate during the decay prior to the secondary re-flare, unlike the behaviour in the mass transfer burst models.


2014 ◽  
Vol 23 (06) ◽  
pp. 1450053 ◽  
Author(s):  
Joan Jing Wang ◽  
Hsiang-Kuang Chang

In accreting neutron star (NS) low-mass X-ray binary (LMXB) systems, NS accretes material from its low-mass companion via a Keplerian disk. In a viscous accretion disk, inflows orbit the NS and spiral in due to dissipative processes, such as the viscous process and collisions of elements. The dynamics of accretion flows in the inner region of an accretion disk is significantly affected by the rotation of NS. The rotation makes NS, thus the spacetime metric, deviate from the originally spherical symmetry, and leads to gravitational quadrupole, on one hand. On the other hand, a rotating NS drags the local inertial frame in its vicinity, which is known as the rotational frame-dragging effect. In this paper, we investigate the orbital motion of accretion flows of accreting NS/LMXBs and demonstrate that the rotational effects of NS result in a band of quasi-quantized structure in the inner region of the accretion disk, which is different, in nature, from the scenario in the strong gravity of black hole arising from the resonance for frequencies related to epicyclic and orbital motions. We also demonstrate that such a disk structure may account for frequencies seen in X-ray variability, such as quasi-periodic oscillations (QPOs), and can be a potential promising tool for the investigation of photon polarization.


1998 ◽  
Vol 188 ◽  
pp. 455-456
Author(s):  
M. Yokosawa

Active galactic nuclei(AGN) produce many type of active phenomena, powerful X-ray emission, UV hump, narrow beam ejection, gamma-ray emission. Energy of these phenomena is thought to be brought out binding energy between a black hole and surrounding matter. What condition around a black hole produces many type of active phenomena? We investigated dynamical evolution of accretion flow onto a black hole by using a general-relativistic, hydrodynamic code which contains a viscosity based on the alpha-model. We find three types of flow's pattern, depending on thickness of accretion disk. In a case of the thin disk with a thickness less than the radius of the event horizon at the vicinity of a marginally stable orbit, the accreting flow through a surface of the marginally stable orbit becomes thinner due to additional cooling caused by a general-relativistic Roche-lobe overflow and horizontal advection of heat. An accretion disk with a middle thickness, 2rh≤h≤ 3rh, divides into two flows: the upper region of the accreting flow expands into the atmosphere of the black hole, and the inner region of the flow becomes thinner, smoothly accreting onto the black hole. The expansion of the flow generates a dynamically violent structure around the event horizon. The kinetic energy of the violent motion becomes equivalent to the thermal energy of the accreting disk. The shock heating due to violent motion produces a thermally driven wind which flows through the atmosphere above the accretion disk. A very thick disk, 4rh≤h,forms a narrow beam whose energy is largely supplied from hot region generated by shock wave. The accretion flowing through the thick disk,h≥ 2rh, cannot only form a single, laminar flow falling into the black hole, but also produces turbulent-like structure above the event horizon. The middle disk may possibly emit the X-ray radiation observed in active galactic nuclei. The thin disk may produce UV hump of Seyfert galaxy. Thick disk may produce a jet observed in radio galaxy. The thickness of the disk is determined by accretion rate, such ashκ κes/cṁf(r) κ 10rhṁf(r), at the inner region of the disk where the radiation pressure dominates over the gas pressure. Here, Ṁ is the accretion rate and ṁ is the normarized one by the critical-mass flux of the Eddington limit. κesandcare the opacity by electron scattering and the velocity of light.f(r) is a function with a value of unity far from the hole.


2020 ◽  
Vol 633 ◽  
pp. A35 ◽  
Author(s):  
D. Gronkiewicz ◽  
A. Różańska

Context. We self-consistently model a magnetically supported accretion disk around a stellar-mass black hole with a warm optically thick corona based on first principles. We consider the gas heating by magneto-rotational instability dynamo. Aims. Our goal is to show that the proper calculation of the gas heating by magnetic dynamo can build up the warm optically thick corona above the accretion disk around a black hole of stellar mass. Methods. Using the vertical model of the disk supported and heated by the magnetic field together with radiative transfer in hydrostatic and radiative equilibrium, we developed a relaxation numerical scheme that allowed us to compute the transition form the disk to corona in a self-consistent way. Results. We demonstrate here that the warm (up to 5 keV) optically thick (up to 10 τes) Compton-cooled corona can form as a result of magnetic heating. A warm corona like this is stronger in the case of the higher accretion rate and the greater magnetic field strength. The radial extent of the warm corona is limited by local thermal instability, which purely depends on radiative processes. The obtained coronal parameters are in agreement with those constrained from X-ray observations. Conclusions. A warm magnetically supported corona tends to appear in the inner disk regions. It may be responsible for soft X-ray excess seen in accreting sources. For lower accretion rates and weaker magnetic field parameters, thermal instability prevents a warm corona, giving rise to eventual clumpiness or ionized outflow.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 8
Author(s):  
Arka Chatterjee ◽  
Broja G. Dutta ◽  
Dusmanta Patra ◽  
Sandip K. Chakrabarti ◽  
Prantik Nandi

X-ray time lags are complicated in nature. The exact reasons for complex lag spectra are as yet unknown. However, the hard lags, in general, are believed to be originated due to inverse Comptonization process. However, the origin of soft lags remained mischievous. Recent studies on “Disk–Jet Connections” revealed that the jets are also contributing in the X-ray spectral and timing properties in a magnitude which was more than what was predicted earlier. In this article, we first show an exact anticorrelation between X-ray time lag and radio flux for XTE J1550-546 during its 1998 outburst. We propose that the soft lags might be generated due to the change in the accretion disk structure along the line of sight during higher jet activity.


2008 ◽  
Vol 17 (10) ◽  
pp. 1859-1866
Author(s):  
◽  
J. RICO

We report on the results from the observations in very high energy band (VHE, Eγ ≥ 100 GeV ) of the γ-ray binary LS I +61 303 and the black hole X-ray binary (BHXB) Cygnus X-1. LS I +61 303 was recently discovered at VHE by MAGIC1 and here we present the preliminary results from an extensive observation campaign, comprising 112 observation hours covering 4 orbital cycles, aiming at determining the time-dependent features of the VHE emission. Cygnus X-1 was observed for a total of 40 hours during 26 nights, spanning the period between June and November 2006. We report on the results of the searches for steady and variable γ-ray signals from Cygnus X-1, including the first experimental evidence for an intense flare, of duration between 1.5 and 24 hours.


Sign in / Sign up

Export Citation Format

Share Document