Distribution of physical parameters for 380 contact binaries in the Kepler field

2020 ◽  
Vol 72 (6) ◽  
Author(s):  
Xu-Zhi Li ◽  
Liang Liu ◽  
Li-Ying Zhu

Abstract We present the physical parameters (p, T, q, i, f) of 380 Kepler contact binary systems (hereafter called CBs). A statistical study on the CBs is carried out based on a Kepler photometric database. Our samples were selected from the Kepler Eclipsing Binary Catalogue of EW-type eclipsing binaries with periods around 0.2–1 d and amplitudes greater than $5\%$. The physical parameters were obtained by fitting the Kepler light curves with the Wilson–Devinney eclipsing binary modeling program. Our sample of CBs contains 160 A-type and 220 W-type CBs. The fill-out factor distribution indicated that CBs generally have shallow fill-out; the proportion of CBs with fill-out factors less than $30\%$ is around $70\%$, which may be related to the formation and evolution of the CBs. The period–temperature relationship of CBs is consistent with previous studies, which is the well-known period–color relationship. The distribution between mass ratio and fill-out factor can provide some information for studying the deep, low-mass ratio contact binaries and CBs which have a large mass ratio. The mass–radius diagram shows that there is a similar linear relationship between the primary and secondary stars while the primary stars are located almost on the ZAMS line; this could be related to the internal nuclear reaction within the primary and secondary stars.

2020 ◽  
Vol 497 (3) ◽  
pp. 3381-3392
Author(s):  
Di-Fu Guo ◽  
Kai Li ◽  
Xing Gao ◽  
Dong-Yang Gao ◽  
Zhi-Jian Xu ◽  
...  

ABSTRACT By analysing the data observed by the Comet Search Programme telescope at Xingming Observatory from 2018 October 11 to 2018 December 19, 24 eclipsing binaries were identified. By cross-matching with the VSX (AAVSO) website, we found that four binaries are newly discovered. By analysing the Transiting Exoplanet Survey Satellite (TESS) data, the light curves of 17 binaries were obtained. First photometric solutions of 23 binaries were obtained by simultaneously analysing all the light curves, except for NSVS 1908107 (first analysed by Pan et al.). Based on the photometric solutions, nine binaries belong to detached binary systems, ten binaries belong to semidetached binary systems, and five binaries belong to contact binary systems. Two W-subtype low-mass ratio contact binaries (the less massive components are hotter), with total eclipsing light curves, were identified: Mis V1395 is a deep contact binary (q = 0.150, $f=80{{\ \rm per\ cent}}$), while NSVS 1917038 is a low-mass ratio binary with an unexpectedly marginal contact degree (q = 1/6.839 = 0.146, $f=4{{\ \rm per\ cent}}$). The total eclipsing detached binary GSC 03698-00022 has an extremely low mass ratio of q = 0.085. The Algol-type binary NSVS 1908107 is also found to have an extremely low mass ratio of q = 0.081. The Algol-type binary DK Per exhibits a continuous period decrease at a rate of dP/dt = −1.26 × 10−7 d yr−1, which may result from the orbital angular momentum loss. Based on the light curves obtained from the TESS data, a pulsating binary candidate (NSVS 1913053) was found.


2021 ◽  
Vol 922 (2) ◽  
pp. 122
Author(s):  
Kai Li ◽  
Qi-Qi Xia ◽  
Chun-Hwey Kim ◽  
Shao-Ming Hu ◽  
Di-Fu Guo ◽  
...  

Abstract The cutoff mass ratio is under debate for contact binaries. In this paper, we present the investigation of two contact binaries with mass ratios close to the low mass ratio limit. It is found that the mass ratios of VSX J082700.8+462850 (hereafter J082700) and 1SWASP J132829.37+555246.1 (hereafter J132829) are both less than 0.1 (q ∼ 0.055 for J082700 and q ∼ 0.089 for J132829). J082700 is a shallow contact binary with a contact degree of ∼19%, and J132829 is a deep contact system with a fill-out factor of ∼70%. The O − C diagram analysis indicated that the two systems manifested long-term period decreases. In addition, J082700 exhibits a cyclic modulation which is more likely resulting from the Applegate mechanism. In order to explore the properties of extremely low mass ratio contact binaries (ELMRCBs), we carried out a statistical analysis on contact binaries with mass ratios of q ≲ 0.1 and discovered that the values of J spin/J orb of three systems are greater than 1/3. Two possible explanations can interpret this phenomenon. One explanation is that some physical processes, unknown to date, are not considered when Hut presented the dynamic stability criterion. The other explanation is that the dimensionless gyration radius (k) should be smaller than the value we used (k 2 = 0.06). We also found that the formation of ELMRCBs possibly has two channels. The study of evolutionary states of ELMRCBs reveals that their evolutionary states are similar with those of normal W UMa contact binaries.


Author(s):  
K Gazeas ◽  
S Zola ◽  
A Liakos ◽  
B Zakrzewski ◽  
S M Rucinski ◽  
...  

Abstract This paper presents the results of a combined spectroscopic and photometric study of 20 contact binary systems: HV Aqr, OO Aql, FI Boo, TX Cnc, OT Cnc, EE Cet, RW Com, KR Com, V401 Cyg, V345 Gem, AK Her, V502 Oph, V566 Oph, V2612 Oph, V1363 Ori, V351 Peg, V357 Peg, Y Sex, V1123 Tau and W UMa, which was conducted in the frame of the W UMa Project. Together with 51 already covered by the project and an additional 67 in the existing literature, these systems bring the total number of contact binaries with known combined spectroscopic and photometric solutions to 138. It was found that mass, radius and luminosity of the components follow certain relations along the MS and new empirical power relations are extracted. We found that 30 per cent of the systems in the current sample show extreme values in their parameters, expressed in their mass ratio or fill-out factor. This study shows that, among the contact binary systems studied, some have an extremely low mass ratio (q<0.1) or an ultra-short orbital period (Porb <0.25 d), which are expected to show evidence of mass transfer progress. The evolutionary status of these components is discussed with the aid of correlation diagrams and their physical and orbital parameters compared to those in the entire sample of known contact binaries. The existence of very short orbital periods confirms the very slow nature of the merging process, which seems to explain why their components still exist as MS stars in contact configurations even after several Gyr of evolution.


Author(s):  
Yanke Tang ◽  
Yani Guo ◽  
Kai Li ◽  
Ning Gai ◽  
Zhikai Li

Abstract PhotometricanalysisofthecontactbinariesTIC393943031andTIC89428764was carried out usingTESS and SuperWASP data for the first time. Using Wilson-Devinneycode, we have discovered TIC 393943031 is a low-mass-ratio deep contact binary with a fillout factor of 50.9(±1)% and a mass ratio of q = 0.163 ± 0.001. TIC 89428764 is a medium and low-mass-ratio contact binary with a fillout factor of 34.5(±1)% and a mass ratio of q = 0.147±0.001. Furthermore, the period study reveals both the stars exhibit continuously increasing periods, the increasing rate is 4.21×10−7day ·year−1for TIC 393943031while 6.36 × 10−7day · year−1for TIC 89428764. The possible reason is mass transfer from the secondary component to the primary component for both the stars. Meanwhile, we discussed their evolutionary phases and orbital angular momenta.


2006 ◽  
Vol 23 (3) ◽  
pp. 189-198 ◽  
Author(s):  
Woo-Baik Lee ◽  
Ho-Il Kim ◽  
Young-Woon Kang ◽  
Kyu-Dong Oh

2021 ◽  
Vol 21 (9) ◽  
pp. 235
Author(s):  
Surjit S. Wadhwa ◽  
Nick F. H. Tothill ◽  
Ain Y. DeHorta ◽  
Miroslav Filipović

Author(s):  
L. V. Gramajo ◽  
T. Palma ◽  
D. Minniti ◽  
R. K. Saito ◽  
J. J. Clariá ◽  
...  

Abstract We present the first results obtained from an extensive study of eclipsing binary (EB) system candidates recently detected in the VISTA Variables in the Vía Láctea (VVV) near-infrared (NIR) Survey. We analyse the VVV tile d040 in the southern part of the Galactic disc wherein the interstellar reddening is comparatively low, which makes it possible to detect hundreds of new EB candidates. We present here the light curves and the determination of the geometric and physical parameters of the best candidates found in this ‘NIR window’, including 37 contact, 50 detached, and 13 semi-detached EB systems. We infer that the studied systems have an average of the $K_s$ amplitudes of $0.8$ mag and a median period of 1.22 days where, in general, contact binaries have shorter periods. Using the ‘Physics Of Eclipsing Binaries’ (PHOEBE) interactive interface, which is based on the Wilson and Devinney code, we find that the studied systems have low eccentricities. The studied EBs present mean values of about 5 700 and 4 900 K for the $T_1$ and $T_2$ components, respectively. The mean mass ratio (q) for the contact EB stars is $\sim$ 0.44. This new galactic disk sample is a first look at the massive study of NIR EB systems.


2020 ◽  
Vol 496 (3) ◽  
pp. 2605-2612
Author(s):  
Volkan Bakış ◽  
Zeki Eker ◽  
Oğuzhan Sarı ◽  
Gökhan Yücel ◽  
Eda Sonbaş

ABSTRACT Twin binaries were identified among the eclipsing binaries with δ > –30° listed in the All Sky Automated Survey (ASAS) catalogue. In addition to the known twin binaries in the literature, 68 new systems have been identified and photometric and spectroscopic observations were done. Colour, spectral type, temperature, ratio of radii and masses of the components have been derived and are presented. Including 12 twin binary systems that exist in both ASAS and the catalogue of absolute parameters of detached eclipsing binary stars, a total of 80 twin detached binary systems have been statistically studied. A comparison of the spectral type distribution of the twins with those of detached eclipsing binary stars in the ASAS database shows that the spectral type distribution of twins is similar to that of detached systems. This result has been interpreted as indicating that there is no special formation mechanism for twins compared to normal detached binaries. As a result of our case study for HD 154010, a twin binary, we present the precise physical parameters of the system.


Sign in / Sign up

Export Citation Format

Share Document