scholarly journals Discovery of a new extreme changing-state quasar with 4 mag variation, SDSS J125809.31+351943.0

Author(s):  
Shumpei Nagoshi ◽  
Fumihide Iwamuro ◽  
Kazuma Wada ◽  
Tomoki Saito

Abstract We report the discovery of a quasar, SDSS J125809.31+351943.0 (J1258), which brightened in optical wavelengths for 4 mag from 1983 to 2015: one of the largest quasar brightening events so far. The history of optical photometry data of this quasar from the Catalina Real-time Transient Survey and All Sky Automated Survey for Super Novae (ASAS-SN), mid-infrared photometry data from the WISE satellite, and the broad emission line (BEL) flux obtained by spectroscopy of the Sloan Digital Sky Survey shows significant increases between 2003 and 2015. Investigating the Canada–France–Hawaii Telescope photometric observations in 1983 and the United States Naval Observatory B catalogue, which contains data from 1975 and 1969, we found that the source was 4 mag fainter before than at the peak of the recent ASAS-SN photometry. From the history of these data, we identified J1258 as a new changing-state quasar (CSQ). We also performed follow-up spectroscopic observations in 2018 December and 2019 May using the 2 m telescope at the Nishi-Harima Astronomical Observatory. The results show that the continuum flux and the BEL flux decreased to about 50% of their peak. This indicates that J1258 present two changing states for the BEL flux and continuum flux. We argue that J1258’s variability, especially its brightening event, can be explained by the propagation of the heating front and the accretion disk state transitions based on the timescale and Eddington ratio variations. The estimated mass of the black hole of J1258 is about an order of magnitude larger than the CSQs found so far. Since both the changing timescale and the size of the accretion disk depend on the black hole mass, the J1258 brightening event can be interpreted as a scaled version of the variability in other CSQs. This suggests that samples of distant quasars with larger black hole masses may contain objects with longer and more severe variations.

Universe ◽  
2019 ◽  
Vol 5 (6) ◽  
pp. 145 ◽  
Author(s):  
David Garofalo ◽  
Damian J. Christian ◽  
Andrew M. Jones

By exploring more than sixty thousand quasars from the Sloan Digital Sky Survey Data Release 5, Steinhardt & Elvis discovered a sub-Eddington boundary and a redshift-dependent drop-off at higher black hole mass, possible clues to the growth history of massive black holes. Our contribution to this special issue of Universe amounts to an application of a model for black hole accretion and jet formation to these observations. For illustrative purposes, we include ~100,000 data points from the Sloan Digital Sky Survey Data Release 7 where the sub-Eddington boundary is also visible and propose a theoretical picture that explains these features. By appealing to thin disk theory and both the lower accretion efficiency and the time evolution of jetted quasars compared to non-jetted quasars in our “gap paradigm”, we explain two features of the sub-Eddington boundary. First, we show that a drop-off on the quasar mass-luminosity plane for larger black hole mass occurs at all redshifts. But the fraction of jetted quasars is directly related to the merger function in this paradigm, which means the jetted quasar fraction drops with decrease in redshift, which allows us to explain a second feature of the sub-Eddington boundary, namely a redshift dependence of the slope of the quasar mass–luminosity boundary at high black hole mass stemming from a change in radiative efficiency with time. We are able to reproduce the mass dependence of, as well as the oscillating behavior in, the slope of the sub-Eddington boundary as a function of time. The basic physical idea involves retrograde accretion occurring only for a subset of the more massive black holes, which implies that most spinning black holes in our model are prograde accretors. In short, this paper amounts to a qualitative overview of how a sub-Eddington boundary naturally emerges in the gap paradigm.


2020 ◽  
Vol 499 (1) ◽  
pp. 269-291 ◽  
Author(s):  
Alex Smith ◽  
Etienne Burtin ◽  
Jiamin Hou ◽  
Richard Neveux ◽  
Ashley J Ross ◽  
...  

ABSTRACT The growth rate and expansion history of the Universe can be measured from large galaxy redshift surveys using the Alcock–Paczynski effect. We validate the Redshift Space Distortion models used in the final analysis of the Sloan Digital Sky Survey (SDSS) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 quasar clustering sample, in configuration and Fourier space, using a series of halo occupation distribution mock catalogues generated using the OuterRim N-body simulation. We test three models on a series of non-blind mocks, in the OuterRim cosmology, and blind mocks, which have been rescaled to new cosmologies, and investigate the effects of redshift smearing and catastrophic redshifts. We find that for the non-blind mocks, the models are able to recover fσ8 to within 3 per cent and α∥ and α⊥ to within 1 per cent. The scatter in the measurements is larger for the blind mocks, due to the assumption of an incorrect fiducial cosmology. From this mock challenge, we find that all three models perform well, with similar systematic errors on fσ8, α∥, and α⊥ at the level of $\sigma _{f\sigma _8}=0.013$, $\sigma _{\alpha _\parallel }=0.012$, and $\sigma _{\alpha _\bot }=0.008$. The systematic error on the combined consensus is $\sigma _{f\sigma _8}=0.011$, $\sigma _{\alpha _\parallel }=0.008$, and $\sigma _{\alpha _\bot }=0.005$, which is used in the final DR16 analysis. For baryon acoustic oscillation fits in configuration and Fourier space, we take conservative systematic errors of $\sigma _{\alpha _\parallel }=0.010$ and $\sigma _{\alpha _\bot }=0.007$.


2019 ◽  
Vol 489 (1) ◽  
pp. 653-662
Author(s):  
Benjamin R Granett ◽  
Ginevra Favole ◽  
Antonio D Montero-Dorta ◽  
Enzo Branchini ◽  
Luigi Guzzo ◽  
...  

ABSTRACT We test the history of structure formation from redshift 1 to today by matching galaxies from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and Sloan Digital Sky Survey (SDSS) with dark matter haloes in the MultiDark, Small MultiDark Planck (SMDPL), N-body simulation. We first show that the standard subhalo abundance matching (SHAM) recipe implemented with MultiDark fits the clustering of galaxies well both at redshift 0 for SDSS and at redshift 1 for VIPERS. This is an important validation of the SHAM model at high redshift. We then remap the simulation time steps to test alternative growth histories and infer the growth index γ = 0.6 ± 0.3. This analysis demonstrates the power of using N-body simulations to forward model galaxy surveys for cosmological inference. The data products and code necessary to reproduce the results of this analysis are available online (https://github.com/darklight-cosmology/vipers-sham).


2019 ◽  
Vol 629 ◽  
pp. A50
Author(s):  
Gabriel A. Oio ◽  
Luis R. Vega ◽  
Eduardo O. Schmidt ◽  
Diego Ferreiro

Aims. In order to study the slope and strength of the non-stellar continuum, we analysed a sample from nearby Narrow Line Seyfert 1 (NLS1). Also, we re-examined the location of NLS1 galaxies on the MBH − σ⋆ relation, using the stellar velocity dispersion and the [OIII]λ5007 emission line as a surrogate of the former. Methods. We studied spectra of a sample of 131 NLS1 galaxies taken from the Sloan Digital Sky Survey (SDSS) DR7. We approached determining the non-stellar continuum by employing the spectral synthesis technique, which uses the code STARLIGHT, and by adopting a power-law base to model the non-stellar continuum. Composite spectra of NLS1 galaxies were also obtained based on the sample. In addition, we obtained the stellar velocity dispersion from the code and by measuring Calcium II Triplet absorption lines and [OIII] emission lines. From Gaussian decomposition of the Hβ profile we calculated the black hole mass. Results. We obtained a median slope of β = −1.6 with a median fraction of contribution of the non-stellar continuum to the total flux of 0.64. We determined black hole masses in the range of log(MBH/M⊙) = 5.6–7.5, which is in agreement with previous works. We found a correlation between the luminosity of the broad component of Hβ and black hole mass with the fraction of a power-law component. Finally, according to our results, NLS1 galaxies in our sample are located mostly underneath the MBH − σ⋆ relation, both considering the stellar velocity dispersion (σ⋆) and the core component of [OIII]λ5007.


2009 ◽  
Vol 5 (S267) ◽  
pp. 263-263
Author(s):  
Brandon C. Kelly ◽  
Marianne Vestergaard ◽  
Xiaohui Fan ◽  
Lars Hernquist ◽  
Philip Hopkins ◽  
...  

We present the first estimate of the black hole mass function (BHMF) of broad-line quasars (BLQSOs) that self-consistently corrects for incompleteness and the statistical uncertainty in the mass estimates, based on a sample of 9886 quasars at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey. We find evidence for “cosmic downsizing” of black holes in BLQSOs, where the peak in their number density shifts to higher redshift with increasing black hole mass. We estimate the lifetime of the BLQSO phase to be 70 ± 5 Myr for supermassive black holes (SMBHs) at z = 1 with a mass of MBH = 109M⊙, and we constrain the maximum mass of a black hole in a BLQSO to be ~ 1010M⊙. We find that most BLQSOs are not radiating at or near the Eddington limit. Our results are consistent with models for self-regulated black hole growth, where the BLQSO phase occurs at the end of a fueling event when black hole feedback unbinds the accreting gas.


2013 ◽  
Vol 777 (1) ◽  
pp. 44 ◽  
Author(s):  
Wenhua Ju ◽  
Jenny E. Greene ◽  
Roman R. Rafikov ◽  
Steven J. Bickerton ◽  
Carles Badenes

2011 ◽  
Vol 413 (2) ◽  
pp. 805-812 ◽  
Author(s):  
R. M. Plotkin ◽  
S. Markoff ◽  
S. C. Trager ◽  
S. F. Anderson

2006 ◽  
Vol 2 (S238) ◽  
pp. 123-126
Author(s):  
Tahir Yaqoob ◽  
Kendrah D. Murphy ◽  
Yuichi Terashima

AbstractOver twenty five years of X-ray observations of the Seyfert 1.9 galaxy NGC 2992 show that it is a promising test-bed for severely constraining accretion disk models. The previous interpretation of the historical activity of NGC 2992 in terms of the accretion disk slowly becoming dormant over many years and then ‘re-building’ itself is not supported by new data. A recent year-long monitoring campaign with RXTE showed that the X-ray continuum varied by more than an order of magnitude on a timescale of weeks. During the large-amplitude flares the centroid energy of the Fe K emission-line complex became significantly redshifted, indicating that the violent activity was occurring close to the putative central black hole where gravitational energy shifts can be sufficiently large. For the continuum, the Compton-y parameter remains roughly constant despite the large-amplitude luminosity variability, with (kT) τ ∼ 20–50.


Sign in / Sign up

Export Citation Format

Share Document