Reactive Carbonyl Species Mediate Methyl Jasmonate-Induced Stomatal Closure

2020 ◽  
Vol 61 (10) ◽  
pp. 1788-1797
Author(s):  
Md. Moshiul Islam ◽  
Wenxiu Ye ◽  
Fahmida Akter ◽  
Mohammad Saidur Rhaman ◽  
Daiki Matsushima ◽  
...  

Abstract Production of reactive oxygen species (ROS) is a key signal event for methyl jasmonate (MeJA)- and abscisic acid (ABA)-induced stomatal closure. We recently showed that reactive carbonyl species (RCS) stimulates stomatal closure as an intermediate downstream of hydrogen peroxide (H2O2) production in the ABA signaling pathway in guard cells of Nicotiana tabacum and Arabidopsis thaliana. In this study, we examined whether RCS functions as an intermediate downstream of H2O2 production in MeJA signaling in guard cells using transgenic tobacco plants overexpressing A. thaliana 2-alkenal reductase (n-alkanal + NAD(P)+ ⇌ 2-alkenal + NAD(P)H + H+) (AER-OE tobacco) and Arabidopsis plants. The stomatal closure induced by MeJA was impaired in the AER-OE tobacco and was inhibited by RCS scavengers, carnosine and pyridoxamine, in the wild-type (WT) tobacco plants and Arabidopsis plants. Application of MeJA significantly induced the accumulation of RCS, including acrolein and 4-hydroxy-(E)-2-nonenal, in the WT tobacco but not in the AER-OE plants. Application of MeJA induced H2O2 production in the WT tobacco and the AER-OE plants and the H2O2 production was not inhibited by the RCS scavengers. These results suggest that RCS functions as an intermediate downstream of ROS production in MeJA signaling and in ABA signaling in guard cells.

2016 ◽  
Vol 57 (12) ◽  
pp. 2552-2563 ◽  
Author(s):  
Md. Moshiul Islam ◽  
Wenxiu Ye ◽  
Daiki Matsushima ◽  
Shintaro Munemasa ◽  
Eiji Okuma ◽  
...  

2020 ◽  
Vol 61 (5) ◽  
pp. 967-977 ◽  
Author(s):  
Mohammad Saidur Rhaman ◽  
Toshiyuki Nakamura ◽  
Yoshimasa Nakamura ◽  
Shintaro Munemasa ◽  
Yoshiyuki Murata

Abstract Myrosinase (β-thioglucoside glucohydrolase, enzyme nomenclature, EC 3.2.1.147, TGG) is a highly abundant protein in Arabidopsis guard cells, of which TGG1 and TGG2 function redundantly in abscisic acid (ABA)- and methyl jasmonate-induced stomatal closure. Reactive carbonyl species (RCS) are α,β-unsaturated aldehydes and ketones, which function downstream of reactive oxygen species (ROS) production in the ABA signalling pathway in guard cells. Among the RCS, acrolein is the most highly reactive, which is significantly produced in ABA-treated guard cells. To clarify the ABA signal pathway downstream of ROS production, we investigated the responses of tgg mutants (tgg1-3, tgg2-1 and tgg1-3 tgg2-1) to acrolein. Acrolein induced stomatal closure and triggered cytosolic alkalization in wild type (WT), tgg1-3 single mutants and in tgg2-1 single mutants, but not in tgg1-3 tgg2-1 double mutants. Exogenous Ca2+ induced stomatal closure and cytosolic alkalization not only in WT but also in all of the mutants. Acrolein- and Ca2+-induced stomatal closures were inhibited by an intracellular acidifying agent, butyrate, a Ca2+ chelator, ethylene glycol tetraacetic acid (EGTA) and a Ca2+ channel blocker, LaCl3. Acrolein induced cytosolic free calcium concentration ([Ca2+]cyt) elevation in guard cells of WT plants but not in the tgg1-3 tgg2-1 double mutants. Exogenous Ca2+ elicited [Ca2+]cyt elevation in guard cells of WT and tgg1-3 tgg2-1. Our results suggest that TGG1 and TGG2 function redundantly, not between ROS production and RCS production, but downstream of RCS production in the ABA signal pathway in Arabidopsis guard cells.


2019 ◽  
Vol 60 (5) ◽  
pp. 1146-1159 ◽  
Author(s):  
Md. Moshiul Islam ◽  
Wenxiu Ye ◽  
Daiki Matsushima ◽  
Mohammad Saidur Rhaman ◽  
Shintaro Munemasa ◽  
...  

2019 ◽  
Vol 60 (10) ◽  
pp. 2263-2271 ◽  
Author(s):  
Shintaro Munemasa ◽  
Yukari Hirao ◽  
Kasumi Tanami ◽  
Yoshiharu Mimata ◽  
Yoshimasa Nakamura ◽  
...  

Abstract Signal crosstalk between jasmonate and ethylene is crucial for a proper maintenance of defense responses and development. Although previous studies reported that both jasmonate and ethylene also function as modulators of stomatal movements, the signal crosstalk mechanism in stomatal guard cells remains unclear. Here, we show that the ethylene signaling inhibits jasmonate signaling as well as abscisic acid (ABA) signaling in guard cells of Arabidopsis thaliana and reveal the signaling crosstalk mechanism. Both an ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and an ethylene-releasing compound ethephon induced transient stomatal closure, and also inhibited methyl jasmonate (MeJA)-induced stomatal closure as well as ABA-induced stomatal closure. The ethylene inhibition of MeJA-induced stomatal closure was abolished in the ethylene-insensitive mutant etr1–1, whereas MeJA-induced stomatal closure was impaired in the ethylene-overproducing mutant eto1–1. Pretreatment with ACC inhibited MeJA-induced reactive oxygen species (ROS) production as well as ABA-induced ROS production in guard cells but did not suppress ABA activation of OPEN STOMATA 1 (OST1) kinase in guard cell-enriched epidermal peels. The whole-cell patch-clamp analysis revealed that ACC attenuated MeJA and ABA activation of S-type anion channels in guard cell protoplasts. However, MeJA and ABA inhibitions of Kin channels were not affected by ACC pretreatment. These results suggest that ethylene signaling inhibits MeJA signaling and ABA signaling by targeting S-type anion channels and ROS but not OST1 kinase and K+ channels in Arabidopsis guard cells.


2021 ◽  
Vol 48 (2) ◽  
pp. 195 ◽  
Author(s):  
Yinli Ma ◽  
Luhan Shao ◽  
Wei Zhang ◽  
Fengxi Zheng

The role of hydrogen sulfide (H2S) and its relationship with hydrogen peroxide (H2O2) in brassinosteroid-induced stomatal closure in Arabidopsis thaliana (L.) Heynh. were investigated. In the present study, 2,4-epibrassinolide (EBR, a bioactive BR) induced stomatal closure in the wild type, the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor. However, EBR failed to close the stomata of mutants Atl-cdes, Atd-cdes, AtrbohF and AtrbohD/F. Additionally, EBR induced increase of L-/D-cysteine desulfhydrase (L-/D-CDes) activity, H2S production, and H2O2 production in the wild type, and the effects were inhibited by H2S scavenger and synthesis inhibitors, and H2O2 scavengers and synthesis inhibitor respectively. Furthermore, EBR increased H2O2 levels in the guard cells of AtrbohD mutant, but couldn’t raise H2O2 levels in the guard cells of AtrbohF and AtrbohD/F mutants. Next, scavengers and synthesis inhibitor of H2O2 could significantly inhibit EBR-induced rise of L-/D-CDes activity and H2S production in the wild type, but H2S scavenger and synthesis inhibitors failed to repress EBR-induced H2O2 production. EBR could increase H2O2 levels in the guard cells of Atl-cdes and Atd-cdes mutants, but EBR failed to induce increase of L-/D-CDes activity and H2S production in AtrbohF and AtrbohD/F mutants. Therefore, we conclude that H2S and H2O2 are involved in the signal transduction pathway of EBR-induced stomatal closure. Altogether, our data suggested that EBR induces AtrbohF-dependent H2O2 production and subsequent AtL-CDes-/AtD-CDes-catalysed H2S production, and finally closes stomata in A. thaliana.


2021 ◽  
Vol 349 ◽  
pp. 129018
Author(s):  
Hao Zhang ◽  
Antonio Dario Troise ◽  
Yajing Qi ◽  
Gangcheng Wu ◽  
Hui Zhang ◽  
...  

2019 ◽  
Vol 10 ◽  
Author(s):  
Jun’ichi Mano ◽  
Sayaka Kanameda ◽  
Rika Kuramitsu ◽  
Nagisa Matsuura ◽  
Yasuo Yamauchi

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 690
Author(s):  
Giancarlo Aldini ◽  
Alessandra A. Altomare

The Special issue is composed of 13 contributions: 9 research papers and 4 reviews [...]


Sign in / Sign up

Export Citation Format

Share Document