scholarly journals The Nature of Young Vein Metasomatism in the Lithosphere of the West Eifel (Germany): Geochemical and Isotopic Constraints from Composite Mantle Xenoliths from the Meerfelder Maar

1998 ◽  
Vol 39 (1) ◽  
pp. 155-185 ◽  
Author(s):  
G. Witt-Eickschen ◽  
W. Kaminsky ◽  
U. Kramm ◽  
B. Harte
1999 ◽  
Vol 63 (5) ◽  
pp. 615-631 ◽  
Author(s):  
T. R. Riley ◽  
D. K. Bailey ◽  
R. E. Harmer ◽  
H. Liebsch ◽  
F. E. Lloyd ◽  
...  

AbstractThe Rockeskyll complex in the north, central part of the Quaternary West Eifel volcanic field encapsulates an association of carbonatite, nephelinite and phonolite. The volcanic complex is dominated by three eruptive centres, which are distinct in their magma chemistry and their mode of emplacement. The Auf Dickel diatreme forms one centre and has erupted the only known carbonatite in the West Eifel, along with a broad range of alkaline rock types. Extrusive carbonatitic volcanism is represented by spheroidal autoliths, which preserve an equilibrium assemblage. The diatreme has also erupted xenoliths of calcite-bearing feldspathoidal syenite, phonolite and sanidine and clinopyroxene megacrysts, which are interpreted as fragments of a sub-volcanic complex. The carbonate phase of volcanism has several manifestations; extrusive lapilli, recrystallized ashes and calcite-bearing syenites, fragmented during diatreme emplacement.A petrogenetic link between carbonatites and alkali mafic magmas is confirmed from Sr and Nd isotope systematics, and an upper mantle origin for the felsic rocks is suggested. The chemistry and mineralogy of mantle xenoliths erupted throughout the West Eifel indicate enrichment in those elements incompatible in the mantle. In addition, the evidence from trace element signatures and melts trapped as glasses support interaction between depleted mantle and small volume carbonate and felsic melts. This close association between carbonate and felsic melts in the mantle is mirrored in the surface eruptives of Auf Dickel and at numerous alkaline-carbonatite provinces worldwide.


2003 ◽  
Vol 196 (1-4) ◽  
pp. 77-105 ◽  
Author(s):  
Gerhard Schmidt ◽  
Gudrun Witt-Eickschen ◽  
Herbert Palme ◽  
Hans Seck ◽  
Bernhard Spettel ◽  
...  

2005 ◽  
Vol 46 (5) ◽  
pp. 945-972 ◽  
Author(s):  
CLIFF S. J. SHAW ◽  
JIMENA EYZAGUIRRE ◽  
BRIAN FRYER ◽  
JOEL GAGNON

1991 ◽  
Vol 55 (378) ◽  
pp. 95-112 ◽  
Author(s):  
F. E. Lloyd ◽  
A. D. Edgar ◽  
D. M. Forsyth ◽  
R. L. Barnett

AbstractGroup I xenoliths, orthopyroxene-rich and orthopyroxene-free, contain Cr-spinel and clinopyroxene ± phlogopite, and occur together with Group II clinopyroxenites ± Ti-spinel ± phlogopite in K-mafic pyroclastics southeast of Gees. The petrography and clinopyroxene chemistry of orthopyroxene-rich (opx-rich sub-group) Group I xenoliths is consistent with an ‘original’ harzburgitic mantle that has been transformed to lherzolite by the addition of endiopside. In harzburgites, orthopyroxenes are reacting to diopside + olivine + alkali-silicate melt, and, by inference, the orthopyroxene-free (opx-free subgroup) Group I, dunite-wehrlite series can be linked to the opx-rich sub-group via this reaction. Progressive enrichment of dunitic material in endiopside-diopside has resulted in the formation of wehrlite. Phlogopite is titaniferous and occurs as a trace mineral in opx-rich, Group I xenoliths, whereas substantial phlogopite vein-networks are confined to the opx-free sub-group (dunite-wehrlite series). Interstitial, alkali-felsic glass occurs are veins within, and as extensions of, the phlogopite networks. Clinopyroxenes in phlogopite-veined xenoliths are decreased in Mg/(Mg + FeTotal) (mg) and Cr and increased in Ti, Al and Ca, compared with clinopyroxenes in xenoliths which have trace phlogopite. It is proposed that harzburgitic and dunitic mantle has been infiltrated by a Ca- and alkalirich, hydrous silicate melt rather than an ephemeral carbonatite melt. Dunite has been transformed to phlogopite wehrlite by the invasion of a Ca-, Al-, Ti- and K-rich, hydrous silicate melt. Ca-activity was high initially in the melt and was reduced by clinopyroxene precipitation. This resulted in enhanced K-activity which led to phlogopite veining of clinopyroxene-rich mantle. Group II phlogopite clinopyroxenites contain Ti-spinel and salites that are distinct in their Ti, Al and Cr contents from endiopsides and diopsides in Group I xenoliths. It is unlikely that these Group II xenoliths represent the culmination of the infiltration processes that have transformed dunite to wehrlite, nor can they be related to the host melt. These xenoliths may have crystallised from Ca- and K-bearing, hydrous silicate melts in mantle channelways buffered by previously precipitated clinopyroxene and phlogopite. Gees lherzolites contain pyroxenes and spinel with distinctly lower Al contents than these same minerals in lherzolites described previously from other West Eifel localities, which may reflect a distinctive lithology and/or processes of modification for the Gees mantle.


Sign in / Sign up

Export Citation Format

Share Document