scholarly journals Comments on contact terms and conformal manifolds in the AdS/CFT correspondence

Author(s):  
Tadakatsu Sakai ◽  
Masashi Zenkai

Abstract We study the contact terms that appear in the correlation functions of exactly marginal operators using the AdS/CFT correspondence. It is known that CFT with an exactly marginal deformation requires the existence of the contact terms is crucial for a consistency of with their coefficients having a geometrical interpretation in the context of conformal manifolds. We show that the AdS/CFT correspondence captures properly the mathematical structure of the correlation functions that is expected from the CFT analysis. For this purpose, we employ holographic RG to formulate a most general setup in the bulk for describing an exactly marginal deformation. The resultant bulk equations of motion are nonlinear and solved perturbatively to obtain the on-shell action. We compute three- and four-point functions of the exactly marginal operators using the GKP-Witten prescription, and show that they match with the expected results precisely. It is pointed out that The cut-off surface prescription in the bulk provides us with a regularization scheme for performing a conformal perturbation. serves as a regularization scheme for conformal perturbation theory in the boundary CFT. around a fixed point is regularized by putting a cut-off surface in the bulk. As an application, we examine a double OPE limit of the four-point functions. The anomalous dimensions of double trace operators are written in terms of the geometrical data of a conformal manifold.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Simone Giombi ◽  
Himanshu Khanchandani

Abstract Using the fact that flat space with a boundary is related by a Weyl transformation to anti-de Sitter (AdS) space, one may study observables in boundary conformal field theory (BCFT) by placing a CFT in AdS. In addition to correlation functions of local operators, a quantity of interest is the free energy of the CFT computed on the AdS space with hyperbolic ball metric, i.e. with a spherical boundary. It is natural to expect that the AdS free energy can be used to define a quantity that decreases under boundary renormalization group flows. We test this idea by discussing in detail the case of the large N critical O(N) model in general dimension d, as well as its perturbative descriptions in the epsilon-expansion. Using the AdS approach, we recover the various known boundary critical behaviors of the model, and we compute the free energy for each boundary fixed point, finding results which are consistent with the conjectured F-theorem in a continuous range of dimensions. Finally, we also use the AdS setup to compute correlation functions and extract some of the BCFT data. In particular, we show that using the bulk equations of motion, in conjunction with crossing symmetry, gives an efficient way to constrain bulk two-point functions and extract anomalous dimensions of boundary operators.


2010 ◽  
Vol 25 (24) ◽  
pp. 4603-4621 ◽  
Author(s):  
THOMAS A. RYTTOV ◽  
FRANCESCO SANNINO

We investigate the gauge dynamics of nonsupersymmetric SU (N) gauge theories featuring the simultaneous presence of fermionic matter transforming according to two distinct representations of the underlying gauge group. We bound the regions of flavors and colors which can yield a physical infrared fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Christopher P. Herzog ◽  
Abhay Shrestha

Abstract This paper is designed to be a practical tool for constructing and investigating two-point correlation functions in defect conformal field theory, directly in physical space, between any two bulk primaries or between a bulk primary and a defect primary, with arbitrary spin. Although geometrically elegant and ultimately a more powerful approach, the embedding space formalism gets rather cumbersome when dealing with mixed symmetry tensors, especially in the projection to physical space. The results in this paper provide an alternative method for studying two-point correlation functions for a generic d-dimensional conformal field theory with a flat p-dimensional defect and d − p = q co-dimensions. We tabulate some examples of correlation functions involving a conserved current, an energy momentum tensor and a Maxwell field strength, while analysing the constraints arising from conservation and the equations of motion. A method for obtaining bulk-to-defect correlators is also explained. Some explicit examples are considered: free scalar theory on ℝp× (ℝq/ℤ2) and a free four dimensional Maxwell theory on a wedge.


Author(s):  
Juan Pérez-Mercade

We present a scenario that is useful for describing hierarchies within classes of many-component systems. Although this scenario may be quite general, it will be illustrated in the case of many-body systems whose space-time evolution can be described by a class of stochastic parabolic nonlinear partial differential equations. The stochastic component we will consider is in the form of additive noise, but other forms of noise such as multiplicative noise may also be incorporated. It will turn out that hierarchical behavior is only one of a class of asymptotic behaviors that can emerge when an out-of-equilibrium system is coarse grained. This phenomenology can be analyzed and described using the renormalization group (RG) [6, 15]. It corresponds to the existence of complex fixed points for the parameters characterizing the system. As is well known (see, for example, Hochberg and Perez-Mercader [8] and Onuki [12] and the references cited there), parameters such as viscosities, noise couplings, and masses evolve with scale. In other words, their values depend on the scale of resolution at which the system is observed (examined). These scaledependent parameters are called effective parameters. The evolutionary changes due to coarse graining or, equivalently, changes in system size, are analyzed using the RG and translate into differential equations for the probability distribution function [8] of the many-body system, or the n-point correlation functions and the effective parameters. Under certain conditions and for systems away from equilibrium, some of the fixed points of the equations describing the scale dependence of the effective parameters can be complex; this translates into complex anomalous dimensions for the stochastic fields and, therefore, the correlation functions of the field develop a complex piece. We will see that basic requirements such as reality of probabilities and maximal correlation lead, in the case of complex fixed points, to hierarchical behavior. This is a first step for the generalization of extensive behavior as described by real power laws to the case of complex exponents and the study of hierarchical behavior.


1990 ◽  
Vol 05 (12) ◽  
pp. 2343-2358 ◽  
Author(s):  
KEKE LI

A method of constructing critical (fixed point) Landau-Ginzburg action from operator algebra is applied to several classes of conformal field theories, including lines of c = 1 models and the coset models based on SU(2) current algebra. For the c = 1 models, the Landau-Ginzberg potential is argued to be physically consistent, and it resembles a modality-one singularity with modal deformation representing exactly the marginal deformation. The potentials for the coset models manifestly possess correct discrete symmetries.


1969 ◽  
Vol 39 (3) ◽  
pp. 433-442 ◽  
Author(s):  
John W. Miles

The question of whether or not waves exist upstream of an obstacle that moves uniformly through an unbounded, incompressible, inviscid, unseparated, rotating flow is addressed by considering the development of the disturbed flow induced by a weak, moving dipole that is introduced into an axisymmetric, rotating flow that is initially undisturbed. Starting from the linearized equations of motion, it is shown that the flow tends asymptotically to the steady flow determined on the hypothesis of no upstream waves and that the transient at a fixed point is O(1/t). It also is shown that the axial velocity upstream (x < 0) of the dipole as x → − ∞ with t fixed is O(|x|−3), as in potential flow, but is O(|x|−1) as t → ∞ with |x| fixed. The results extend directly to closed obstacles of sufficiently small transverse dimensions and suggest the existence of a finite, parametric domain of no upstream waves for smooth, slender obstacles. The axial velocity in front of a small, moving sphere at a given instant in the transient régime is calculated and compared with Pritchard's laboratory measurements. The agreement is within the experimental scatter for Rossby numbers greater than about 0·3 even though the equivalence between sphere and dipole is exact only for infinite Rossby number.


Sign in / Sign up

Export Citation Format

Share Document