scholarly journals Leading order anomalous dimensions at the Wilson-Fisher fixed point from CFT

2017 ◽  
Vol 2017 (7) ◽  
Author(s):  
Konstantinos Roumpedakis
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Shai M. Chester

Abstract We study monopole operators with the lowest possible topological charge q = 1/2 at the infrared fixed point of scalar electrodynamics in 2 + 1 dimension (scalar QED3) with N complex scalars and Chern-Simons coupling |k| = N. In the large N expansion, monopole operators in this theory with spins $$ \mathrm{\ell}<O\left(\sqrt{N}\right) $$ ℓ < O N and associated flavor representations are expected to have the same scaling dimension to sub-leading order in 1/N. We use the state-operator correspondence to calculate the scaling dimension to sub-leading order with the result N − 0.2743 + O(1/N), which improves on existing leading order results. We also compute the ℓ2/N term that breaks the degeneracy to sub-leading order for monopoles with spins $$ \mathrm{\ell}=O\left(\sqrt{N}\right) $$ ℓ = O N .


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Matthijs Hogervorst ◽  
Chiara Toldo

Abstract We study fixed points with N scalar fields in 4 − ε dimensions to leading order in ε using a bottom-up approach. We do so by analyzing O(N) invariants of the quartic coupling λijkl that describes such CFTs. In particular, we show that λiijj and $$ {\lambda}_{ijkl}^2 $$ λ ijkl 2 are restricted to a specific domain, refining a result by Rychkov and Stergiou. We also study averages of one-loop anomalous dimensions of composite operators without gradients. In many cases, we are able to show that the O(N) fixed point maximizes such averages. In the final part of this work, we generalize our results to theories with N complex scalars and to bosonic QED. In particular we show that to leading order in ε, there are no bosonic QED fixed points with N < 183 flavors.


2010 ◽  
Vol 25 (24) ◽  
pp. 4603-4621 ◽  
Author(s):  
THOMAS A. RYTTOV ◽  
FRANCESCO SANNINO

We investigate the gauge dynamics of nonsupersymmetric SU (N) gauge theories featuring the simultaneous presence of fermionic matter transforming according to two distinct representations of the underlying gauge group. We bound the regions of flavors and colors which can yield a physical infrared fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms.


2001 ◽  
Vol 16 (11) ◽  
pp. 2119-2124 ◽  
Author(s):  
B.-J. SCHAEFER ◽  
O. BOHR ◽  
J. WAMBACH

Self-consistent new renormalization group flow equations for an O(N)-symmetric scalar theory are approximated in next-to-leading order of the derivative expansion. The Wilson-Fisher fixed point in three dimensions is analyzed in detail and various critical exponents are calculated.


2018 ◽  
Vol 191 ◽  
pp. 04006
Author(s):  
Anatoly Kotikov

We show the new relationship [1] between the anomalous dimensions, resummed through next-to-next-to-leading-logarithmic order, in the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations for the first Mellin moments Dq,g(μ2) of the quark and gluon fragmentation functions, which correspond to the average hadron multiplicities in jets initiated by quarks and gluons, respectively. So far, such relationships have only been known from supersymmetric (SUSY) QCD. Exploiting available next-to-nextto- next-to-leading-order (NNNLO) information on the ratio D+g (μ2)=D+q (μ2) of the dominant plus components, the fit of the world data of Dq,g(μ2) for charged hadrons measured in e+e- annihilation leads to α(5)s (MZ) = 0:1205 +0:0016 -0:0020.


2013 ◽  
Vol 28 (25) ◽  
pp. 1360010 ◽  
Author(s):  
R. J. CREWTHER ◽  
LEWIS C. TUNSTALL

In this paper, we present an explanation for the ΔI = 1/2 rule in K-decays based on the premise of an infrared fixed point α IR in the running coupling αs of quantum chromodynamics (QCD) for three light quarks u, d, s. At the fixed point, the quark condensate [Formula: see text] spontaneously breaks scale and chiral SU (3)L× SU (3)R symmetry. Consequently, the low-lying spectrum contains nine Nambu–Goldstone bosons: π, K, η and a QCD dilaton σ. We identify σ as the f0(500) resonance and construct a chiral-scale perturbation theory χPTσ for low-energy amplitudes expanded in αs about α IR . The ΔI = 1/2 rule emerges in the leading order of χPTσ through a σ-pole term KS→σ→ππ, with a gKSσ coupling fixed by data on γγ→π0π0 and KS→γγ. We also determine R IR ≈5 for the nonperturbative Drell–Yan ratio at α IR .


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Apratim Kaviraj ◽  
Slava Rychkov ◽  
Emilio Trevisani

Abstract We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric fixed point (Cardy, 1985), we look for interactions which may destabilize the SUSY RG flow and lead to the loss of dimensional reduction. This problem is reduced to studying the anomalous dimensions of “leaders” — lowest dimension parts of Sn-invariant perturbations in the Cardy basis. Leader operators are classified as non-susy-writable, susy-writable or susy-null depending on their symmetry. Susy-writable leaders are additionally classified as belonging to superprimary multiplets transforming in particular OSp(d|2) representations. We enumerate all leaders up to 6d dimension ∆ = 12, and compute their perturbative anomalous dimensions (up to two loops). We thus identify two perturbations (with susy- null and non-susy-writable leaders) becoming relevant below a critical dimension dc ≈ 4.2 - 4.7. This supports the scenario that the SUSY fixed point exists for all 3 < d ⩽ 6, but becomes unstable for d < dc.


Sign in / Sign up

Export Citation Format

Share Document