scholarly journals Entanglement entropy and Schmidt number as measures of delocalization of α clusters in one-dimensional nuclear systems

2015 ◽  
Vol 2015 (4) ◽  
Author(s):  
Yoshiko Kanada-En’yo
1978 ◽  
Vol 88 (3) ◽  
pp. 541-562 ◽  
Author(s):  
R. J. Hill

Several models are developed for the high-wavenumber portion of the spectral transfer function of scalar quantities advected by high-Reynolds-number, locally isotropic turbulent flow. These models are applicable for arbitrary Prandtl or Schmidt number, v/D, and the resultant scalar spectra are compared with several experiments having different v/D. The ‘bump’ in the temperature spectrum of air observed over land is shown to be due to a tendency toward a viscous-convective range and the presence of this bump is consistent with experiments for large v/D. The wavenumbers defining the transition between the inertial-convective range and viscous-convective range for asymptotically large v/D (denoted k* and k1* for the three- and one-dimensional spectra) are determined by comparison of the models with experiments. A measurement of the transitional wavenumber k1* [denoted (k1*)s] is found to depend on v/D and on any filter cut-off. On the basis of the k* values it is shown that measurements of β1 from temperature spectra in moderate Reynolds number turbulence in air (v/D = 0·72) maybe over-estimates and that the inertial-diffusive range of temperature fluctuations in mercury (v/D ≃ 0·02) is of very limited extent.


2018 ◽  
Vol 29 (10) ◽  
pp. 1850098 ◽  
Author(s):  
R. F. S. Andrade ◽  
A. M. C. Souza

Properties of one-dimensional discrete-time quantum walks (DTQWs) are sensitive to the presence of inhomogeneities in the substrate, which can be generated by defining position-dependent coin operators. Deterministic aperiodic sequences of two or more symbols provide ideal environments where these properties can be explored in a controlled way. Based on an exhaustive numerical study, this work discusses a two-coin model resulting from the construction rules that lead to the usual fractal Cantor set. Although the fraction of the less frequent coin [Formula: see text] as the size of the chain is increased, it leaves peculiar properties in the walker dynamics. They are characterized by the wave function, from which results for the probability distribution and its variance, as well as the entanglement entropy, were obtained. A number of results for different choices of the two coins are presented. The entanglement entropy has shown to be very sensitive to uncovering subtle quantum effects present in the model.


2019 ◽  
Vol 70 (1) ◽  
pp. 41-56
Author(s):  
Steven J. Kaptein ◽  
Koen J. van de Wal ◽  
Leon P. J. Kamp ◽  
Vincenzo Armenio ◽  
Herman J. H. Clercx ◽  
...  

AbstractOne-dimensional models of exchange flows driven by horizontal density gradients are well known for performing poorly in situations with weak turbulent mixing. The main issue with these models is that the horizontal density gradient is usually imposed as a constant, leading to non-physically high stratification known as runaway stratification. Here, we propose two new parametrizations of the horizontal density gradient leading to one-dimensional models able to tackle strongly stratified exchange flows at high and low Schmidt number values. The models are extensively tested against results from laminar two-dimensional simulations and are shown to outperform the models using the classical constant parametrization for the horizontal density gradients. Four different flow regimes are found by exploring the parameter space defined by the gravitational Reynolds number Reg, the Schmidt number Sc, and the aspect ratio of the channel Γ. For small values of RegΓ, when diffusion dominates, all models perform well. However, as RegΓ increases, two clearly distinct regimes emerge depending on the Sc value, with an equally clear distinction of the performance of the one-dimensional models.


2013 ◽  
Vol 88 (1) ◽  
pp. 015003 ◽  
Author(s):  
Mostafa Motamedifar ◽  
Saeed Mahdavifar ◽  
Saber Farjami Shayesteh ◽  
Somayyeh Nemati

Sign in / Sign up

Export Citation Format

Share Document