scholarly journals Energy Cost of Propulsion in Standard and Ultralight Wheelchairs in People With Spinal Cord Injuries

1999 ◽  
Vol 79 (2) ◽  
pp. 146-158 ◽  
Author(s):  
Claire E Beekman ◽  
Leslie Miller-Porter ◽  
Marion Schoneberger

AbstractBackground and Purpose. Wheelchair- and subject-related factors influence the efficiency of wheelchair propulsion. The purpose of this study was to compare wheelchair propulsion in ultralight and standard wheelchairs in people with different levels of spinal cord injury. Subjects. Seventy-four subjects (mean age=26.2 years, SD=7.14, range=17-50) with spinal cord injury resulting in motor loss (30 with tetraplegia and 44 with paraplegia) were studied. Method. Each subject propelled standard and ultralight wheelchairs around an outdoor track at self-selected speeds, while data were collected at 4 predetermined intervals. Speed, distance traveled, and oxygen cost (V̇o2 mL/kg/m) were compared by wheelchair, group, and over time, using a Bonferroni correction. Results. In the ultralight wheelchair, speed and distance traveled were greater for both subjects with paraplegia and subjects with tetraplegia, whereas V̇o2 was less only for subjects with paraplegia. Subjects with paraplegia propelled faster and farther than did subjects with tetraplegia. Conclusion and Discussion. The ultralight wheelchair improved the efficiency of propulsion in the tested subjects. Subjects with tetraplegia, especially at the C6 level, are limited in their ability to propel a wheelchair.

2010 ◽  
Vol 43 (13) ◽  
pp. 2508-2515 ◽  
Author(s):  
Angel Gil-Agudo ◽  
Antonio Del Ama-Espinosa ◽  
Enrique Pérez-Rizo ◽  
Soraya Pérez-Nombela ◽  
Luis Pablo Rodríguez-Rodríguez

1999 ◽  
Vol 10 (3) ◽  
pp. 223-232 ◽  
Author(s):  
Craig J Newsam ◽  
Sreesha S Rao ◽  
Sara J Mulroy ◽  
JoAnne K Gronley ◽  
Ernest L Bontrager ◽  
...  

2021 ◽  
pp. 1357034X2110256
Author(s):  
Denisa Butnaru

Motility impairments resulting from spinal cord injuries and cerebrovascular accidents are increasingly prevalent in society, leading to the growing development of rehabilitative robotic technologies, among them exoskeletons. This article outlines how bodies with neurological conditions such as spinal cord injury and stroke engage in processes of re-appropriation while using exoskeletons and some of the challenges they face. The main task of exoskeletons in rehabilitative environments is either to rehabilitate or ameliorate anatomic functions of impaired bodies. In these complex processes, they also play a crucial role in recasting specific corporeal phenomenologies. For the accomplishment of these forms of corporeal re-appropriation, the role of experts is crucial. This article explores how categories such as bodily resistance, techno-inter-corporeal co-production of bodies and machines, as well as body work mark the landscape of these contemporary forms of impaired corporeality. While defending corporeal extension rather than incorporation, I argue against the figure of the ‘cyborg’ and posit the idea of ‘residual subjectivity’.


1984 ◽  
Vol 61 (5) ◽  
pp. 925-930 ◽  
Author(s):  
Ronald W. J. Ford ◽  
David N. Malm

✓ Hypocarbia, normocarbia, or hypercarbia was maintained for an 8-hour period beginning 30 minutes after acute threshold spinal cord injuries in cats. No statistically significant differences in neurological recovery or histologically assessed tissue preservation were found among the three groups of animals 6 weeks after injury. No animal recovered the ability to walk. It is concluded that maintenance of hypercarbia or hypocarbia during the early postinjury period is no more therapeutic than maintenance of normocarbia. Mortality rates and tissue preservation data suggest, however, that postinjury hypocarbia may be less damaging than hypercarbia.


2019 ◽  
Vol 6 (3) ◽  
pp. 83-91
Author(s):  
Mohaddeseh Hedayatzadeh ◽  
Hamid Reza Kobravi ◽  
Maryam Tehranipour

Background: Spinal cord injury is one of the diseases that, no specific treatment has yet found despite the variety of works that have done in this field. Different approaches to treat such injuries have investigated today. One of them is invasive intra-spinal interventions such as electrical stimulation. Therefore, in this study, the effect of the protocol for intra-spinal variable and fixed electrical stimulation has been investigated in order to recover from spinal cord injury. Methods: In the study, 18 Wistar male rats randomly divided into Three groups, including intraspinal electrical stimulation (IES), IES with variable pattern of stimulation (VP IES) and a sham group. Animals initially subjected to induced spinal cord injury. After one week, the animal movement was recorded on the treadmill during practice using a camera and angles of the ankle joint were measured using the Tracker software. Then, the obtained data were analyzed by nonlinear evaluations in the phase space. Results: The motion analyses and kinematic analyses were carried out on all groups. According to the achieved results, the gait dynamics of the VP IES group has the most conformity to the gait dynamics of the healthy group. Also, the best quality of the balance preservation observed in the VP IES group. Conclusion: It can be concluded that the IES with variable pattern of stimulation along with exercise therapy has significant gait restorative effects and increases the range of motion in rats with induced spinal cord injury.


2005 ◽  
pp. 015-019
Author(s):  
Igor Ivanovich Larkin ◽  
Valery Ivanovich Larkin

Objective. To analyse the possibility of diagnostics improvement in children with spinal cord injuries. Material and Methods. The observations of 147 cases of various spinal cord injuries in children at the age of 11 months to 15 years have been analyzed. Causes of trauma, age peculiarities of spinal injury manifestations, and difficulties of clinical and radiological diagnostics are discussed. Results. Most cases of spinal cord injury in children could be revealed and adequately managed at a prehospital stage. It should be noted that the spine lesion and MRI changes do not always accompany spinal cord injury in children. This observation must be taken into account while making diagnosis. Conclusion. Electromyography is an important examination confirming spinal cord injury without radiographic abnormalities (SCIWORA syndrome) in children.


2021 ◽  
Author(s):  
Zheng Cao ◽  
Weitao Man ◽  
Yuhui Xiong ◽  
Yi Guo ◽  
Shuhui Yang ◽  
...  

Abstract A hierarchically aligned fibrin hydrogel (AFG) that possesses soft stiffness and aligned nanofiber structure has been successfully proven to facilitate neuroregeneration in vitro and in vivo. However, its potential in promoting nerve regeneration in large animal models that is critical for clinical translation has not been sufficiently specified. Here, the effects of AFG on directing neuroregeneration in canine hemisected T12 spinal cord injuries were explored. Histologically obvious white matter regeneration consisting of a large area of consecutive, compact, and aligned nerve fibers is induced by AFG, leading to a significant motor functional restoration. The canines with AFG implantation start to stand well with their defective legs from 3 to 4 weeks postoperatively and even effortlessly climb the steps from 7 to 8 weeks. Moreover, high-resolution multi-shot diffusion tensor imaging illustrates the spatiotemporal dynamics of nerve regeneration rapidly crossing the lesion within 4 weeks in the AFG group. Our findings indicate that AFG could be a potential therapeutic vehicle for spinal cord injury by inducing rapid white matter regeneration and restoring locomotion, pointing out its promising prospect in clinic practice.


Sign in / Sign up

Export Citation Format

Share Document