EFFECTIVE DOSES DUE TO OUTDOOR AND INDOOR RADON AT A MEDITERRANEAN SITE

2019 ◽  
Vol 187 (2) ◽  
pp. 215-219
Author(s):  
Dafina Kikaj ◽  
Janja Vaupotič

Abstract A year-long continuous measurement of the radon activity concentration in the outdoor air at a Mediterranean site has shown a range of 2–144 Bq m−3 and annual mean of 18 ± 14 Bq m−3. Seasonal means were: 15 ± 10 Bq m−3 in winter, 15 ± 12 Bq m−3 in spring, 22 ± 19 Bq m−3 in summer and 17 ± 12 Bq m−3 in autumn. In summer, the average radon activity concentration in the daytime (6–22 h) was 15.2 Bq m−3 and in the night-time (22–6 h) 33.4 Bq m−3. The annual effective dose was 1.83 mSv, with 1.66 mSv from indoor and 0.17 mSv (9%) from outdoor radon. The related doses for the summertime were (mSv): 0.29, 0.24 and 0.05 (18%).

2020 ◽  
Vol 191 (2) ◽  
pp. 188-191
Author(s):  
Petr P S Otahal ◽  
Ivo Burian ◽  
Eliska Fialova ◽  
Josef Vosahlik

Abstract Measurements of activity concentration of radon gas and radon decay products were carried out in several workplaces including schools, radium spas, swimming pools, water treatment plants, caves and former mines. Based on these measurements, annual effective doses to workers were estimated and values of the equilibrium factor, F, were calculated. This paper describes the different approaches used to estimate the annual effective dose based on the dose coefficients recommended by the International Commission on Radiological Protection. Using the measured F values as opposed to the default F value of 0.4 changed the doses by about 5–95% depending mainly upon the ventilation conditions of the workplace.


2016 ◽  
Vol 57 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Masahiro Hosoda ◽  
Shinji Tokonami ◽  
Yasutaka Omori ◽  
Tetsuo Ishikawa ◽  
Kazuki Iwaoka

Abstract Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m −3 , respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents.


2017 ◽  
Vol 62 (5) ◽  
pp. 21-27 ◽  
Author(s):  
Н. Шандала ◽  
N. Shandala ◽  
А. Маренный ◽  
A. Marennyy ◽  
Д. Исаев ◽  
...  

Purpose: To obtain data of radiation survey in workplaces of the personnel of the Priargun Production Mountain Chemical Association (OJSC PPMCA), who work at the premises of the ground facilities. Material and methods: In the course of the radiation survey. Integral track methods were used to measure radon activity concentration by REI-1 track cameras of the TRACK-REI-1M kit. To assess the activity balance factor between radon and its radionuclide progenies, short term measurements of radon activity concentration (AC) and effective equilibrium concentration (EEC) of radon by handle radiometers of radon and its progenies. Gamma dose rate was measured by handle dosimeters. Results: Annual AC, EEC and effective dose due to radon and external gamma exposures in workplaces at the ground facilities of OJSC PPMCA have been obtained. Total number of the inspected workshops is 138, including 121 workshops occupied by the A group personnel, and 17 – by the B group personnel. Conclusions: It was shown that annual doses 20 mSv could be exceeded for the A group personnel who work at three workshops shaft 8K of the mine-2, one workshop of building 630A of the Hydro-metallurgical Plant and one workshop of shaft 5 B of G mine. In the workshops of the B group personnel, 5 mSv annual effective doses can be exceeded 2 and more times at the premises of canteen number 18 and administrative domestic building of mine-2.


2020 ◽  
Vol 191 (4) ◽  
pp. 452-464
Author(s):  
D Romano ◽  
F Caridi ◽  
M Di Bella ◽  
F Italiano ◽  
S Magazù ◽  
...  

Abstract Crystalline rocks can produce dangerous radiation levels on the basis of their content in radioisotopes. Here, we report radiological data from 10 metamorphic and igneous rock samples collected from the crystalline basement of the Peloritani Mountains (southern Italy). In order to evaluate the radiological properties of these rocks, the gamma radiation and the radon emanation have been measured. Moreover, since some of these rocks are employed as building materials, we assess the potential hazard for population connected to their use. Gamma spectroscopy was used to measure the 226Ra, 232Th and 40K activity concentration, whereas the radon emanation was investigated by using a RAD 7 detector. The results show 226Ra, 232Th and 40K activity concentration values ranging from (17 ± 4) to (56 ± 8) Bq kg−1, (14 ± 3) to (77 ± 14) Bq kg−1 and (167 ± 84) to (1760 ± 242) Bq kg−1, respectively. Values of the annual effective dose equivalent outdoor range from 0.035 to 0.152 mSv y−1, whereas the gamma index is in the range of 0.22–0.98. The 222Rn emanation coefficient and the 222Rn surface exhalation rate vary from (0.63 ± 0.3) to (8.27 ± 1.6)% and from (0.12 ± 0.03) to (2.75 ± 0.17) Bq m−2 h−1, respectively. The indoor radon derived from the building use of these rocks induces an approximate contribution to the annual effective dose ranging from 8 to 176 μSv y−1. All the obtained results suggest that the crystalline rocks from the Peloritani Mountains are not harmful for the residential population, even though they induce annual effective doses due to terrestrial gamma radiation above the worldwide average values. Moreover, their use as building materials does not produce significant health hazards connected to the indoor radon exposure.


2020 ◽  
Vol 191 (2) ◽  
pp. 233-237
Author(s):  
F Ambrosino ◽  
L Thinová ◽  
M Briestenský ◽  
C Sabbarese

Abstract The present work aims to assess the effective doses from long-term continual radon monitoring in six European caves (Slovenia, Slovakia and the Czech Republic), including influencing environmental factors. Caves are important radiation protection subjects because of elevated radon activity concentration (~kBq/m3), mostly due to the low natural ventilation. The sources of radon gas are most often underground rock layers and clastic sediments. The radon activity concentrations show seasonal variations, for which the outside temperature is the main driving force. The human health impact due to the radon inhalation in monitored caves was estimated through the annual effective dose, using the methodology provided by the International Commission on Radiological Protection (ICRP Publication 137). The annual effective dose could reach several tens of mSv, depending on the working hours spent in the underground.


2018 ◽  
Vol 185 (1) ◽  
pp. 7-16 ◽  
Author(s):  
T Dicu ◽  
B D Burghele ◽  
A Cucoș ◽  
R Mishra ◽  
B K Sapra

Abstract The purpose of the article is to evaluate the annual effective dose for 80 women divided into two samples; one sample located in the former uranium Băiţa-Ştei area, hereinafter referred to as case sample, respectively for a control sample, located in the same county, but exposed in most cases to indoor radon activity concentrations <300 Bq m−3. In this regard, the homemade ‘RaThoGamma’ kit was used, which contained two thermoluminescent dosimeters, a CR-39 track detector (RSKS) for indoor radon activity concentration, two CR-39 track detectors (Radtrak2®/ Radtrak2T®) for radon and thoron activity concentrations as well as Direct Radon Progeny Sensors/Direct Thoron Progeny Sensors for measuring time-averaged radon and thoron progenies concentrations. In addition, a total of 80 water samples were collected in order to evaluate the ingestion dose due to radon and radium activity concentrations in drinking water. The maximum total annual effective dose in the control sample was 14.1 mSv, while in the case sample the maximum annual effective dose was 60.5 mSv. This difference is mainly due to radon progenies inhalation. Other pathways did not show a statistically significant difference between the two samples, showing a minor contribution to the annual effective dose.


Author(s):  
Anas M Ababneh ◽  
Qutad M Samarah

Abstract It is inevitable that we are exposed to radiation daily from various sources and products that we consume on daily basis. The use of toothpaste for oral hygiene is one of the most common daily practices by humans and yet very little data are available regarding its radiation content. In this work, we investigated the concentrations of gamma emitting radionuclides in toothpaste samples consumed in Jordan. 40K and 226Ra were detected in almost one-third of the samples, whereas 228Ra was detected in nearly half of them. The corresponding activity concentrations in the detected samples were in the ranges of 68.7–154.2, 4.6–14.1 and 1.3–10.0 Bq/kg, respectively. Dose assessment of accidental ingestion of toothpaste for children and adults was made, and its contribution to the annual effective dose was found to be very minimal with maximum doses of ~2.9 and 1.3 μSv for children and adults, respectively.


2017 ◽  
Vol 14 (4) ◽  
pp. 688-691 ◽  
Author(s):  
Baghdad Science Journal

In this research the activity of radon gas in air in Baghad governorate,Iraq, using “alpha-emitters track registration (CR-39) track detector were measured. This measurement was done for selected areas from Baghdad Governorate, The results obtained shows that the highest average concentrations for Rn-222 is (179.077 Bq/m^3) which was recorded within Al-Shaaib city and less average concentrations was (15.79 Bq/m^3) in the nearby residential area of Baghdad International Airport and the overall average concentrations is (86.508 Bq/m^3) for these regions. Then the radon concentration was measured annual effective dose calculated from radon concentration and found in range from 0.4031 mSv/y to 4.5179 mSv /y with an average value of 2.1824 mSv/y. The annual effective dose of radon was within the allowed international limits.


2017 ◽  
Vol 14 (3) ◽  
pp. 619-624
Author(s):  
Baghdad Science Journal

In this research the specific activity of natural radionuclides 226Ra, 232Th and 40K were determined by sodium iodide enhanced by thallium NaI(TI) detector and assessed the annual effective dose in Dielac 1 and 2 and Nactalia 1 and 2 for children of less than 1 year which are available in Baghdad markets. The specific activity of 40K has the greater value in all the types which is in the range of allowed levels globally that suggested by UNSCEAR. The mean value of annual effective doses were 2.92, 4.005 and 1.6325 mSv/y for 226Ra, 232Th and 40K respectively.


Sign in / Sign up

Export Citation Format

Share Document