scholarly journals The SOHARC Model System for Growth and Yield of Southern Hardwoods

2008 ◽  
Vol 32 (4) ◽  
pp. 173-183 ◽  
Author(s):  
John Paul McTague ◽  
David O'Loughlin ◽  
Joseph P. Roise ◽  
Daniel J. Robison ◽  
Robert C. Kellison

Abstract A system of stand level and individual tree growth-and-yield models are presented for southern hardwoods. These models were developed from numerous permanent growth-and-yield plots established across 13 states in the US South on 9 site types, in even-aged (age classes from 20 to 60 years), fully stocked, naturally regenerated mixed hardwood and mixed hardwood-pine stands. Nested plots (⅕ and ac) were remeasured at 5-year intervals. The system of permanent plots was established and maintained by private and public members in the North Carolina State University Hardwood Research Cooperative. Stand level models are presented for dominant height, survival, basal area prediction and projection, and the ingrowth component. Individual tree diameter growth and tree height models were constructed for the most common species: sweetgum, tupelo, yellow-poplar, blackgum, and red maple. All other species were grouped according to growth dynamics into four species groups using cluster analysis. A ranking variable was incorporated into the individual tree growth models to account for competition.

2015 ◽  
Vol 45 (8) ◽  
pp. 1006-1018 ◽  
Author(s):  
Sonja Vospernik ◽  
Robert A. Monserud ◽  
Hubert Sterba

We examined the relationship between thinning intensity and volume increment predicted by four commonly used individual-tree growth models in Central Europe (i.e., BWIN, Moses, Prognaus, and Silva). We replicated conditions of older growth and yield experiments by selecting 34 young, dense plots of Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and European beech (Fagus sylvatica L.). At these plots, we simulated growth, with mortality only, to obtain the maximum basal area. Maximum basal area was then decreased by 5% or 10% steps using thinning from below. Maximum density varied considerably between simulators; it was mostly in a reasonable range but partly exceeded the maximum basal area observed by the Austrian National Forest Inventory or the self-thinning line. In almost all cases, simulated volume increment was highest at maximum basal area and then decreased with decreasing basal area. Critical basal area, at which 95% of maximum volume increment can be achieved, ranged from 0.46 to 0.96. For all simulators, critical basal area was lower for the more shade-tolerant species. It increased with age, except for Norway spruce, when simulated with the BWIN model. Age, where mean annual increment culminated, compared well with yield tables.


2017 ◽  
Vol 68 (2) ◽  
pp. 103-112 ◽  
Author(s):  
Sonja Vospernik

Summary Individual-tree growth models are the new standard for modeling growth and yield. Their main purpose is to simulate future forest management scenarios but they can also be used to predict wood quality, rockfall protection or habitat quality. Individual tree growth models may consist of different models but core models are diameter increment, height increment, crown ratio (often used as a predictor for increment) and mortality. The model differentiation is based on how these four models include tree age (size), competition and site. Four common growth simulators in Central Europe are BWIN, Moses, Prognaus and Silva. These four models are commonly deployed to simulate 30 years of growth, but a prospective application is the simulation of a whole rotation period (80–150 years). It is therefore crucial to understand the possibilities and limitations of these models by evaluating them. This review paper summarizes the statistical and emergent properties’ evaluation results for these models. Statistical evaluations focus on individual models of a simulator, whereas the evaluation of emergent properties evaluates the entire simulator, by testing if the models conform to known principles of stand growth. Further, the meaning of these evaluation results for the development and improvement of individual-tree growth models is discussed.


2001 ◽  
Vol 154 (1-2) ◽  
pp. 261-276 ◽  
Author(s):  
Julian C. Fox ◽  
Peter K. Ades ◽  
Huiquan Bi

Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 187 ◽  
Author(s):  
Qiangxin Ou ◽  
Xiangdong Lei ◽  
Chenchen Shen

Individual tree growth models are flexible and commonly used to represent growth dynamics for heterogeneous and structurally complex uneven-aged stands. Besides traditional statistical models, the rapid development of nonparametric and nonlinear machine learning methods, such as random forest (RF), boosted regression tree (BRT), cubist (Cubist) and multivariate adaptive regression splines (MARS), provides a new way for predicting individual tree growth. However, the application of these approaches to individual tree growth modelling is still limited and short of a comparison of their performance. The objectives of this study were to compare and evaluate the performance of the RF, BRT, Cubist and MARS models for modelling the individual tree diameter growth based on tree size, competition, site condition and climate factors for larch–spruce–fir mixed forests in northeast China. Totally, 16,619 observations from long-term sample plots were used. Based on tenfold cross-validation, we found that the RF, BRT and Cubist models had a distinct advantage over the MARS model in predicting individual tree diameter growth. The Cubist model ranked the highest in terms of model performance (RMSEcv [0.1351 cm], MAEcv [0.0972 cm] and R2cv [0.5734]), followed by BRT and RF models, whereas the MARS ranked the lowest (RMSEcv [0.1462 cm], MAEcv [0.1086 cm] and R2cv [0.4993]). Relative importance of predictors determined from the RF and BRT models demonstrated that the competition and tree size were the main drivers to diameter growth, and climate had limited capacity in explaining the variation in tree diameter growth at local scale. In general, the RF, BRT and Cubist models are effective and powerful modelling methods for predicting the individual tree diameter growth.


2003 ◽  
Vol 33 (3) ◽  
pp. 430-434 ◽  
Author(s):  
Annika Kangas ◽  
Matti Maltamo

Diameter distribution of the growing stock is essential in many forest management planning problems. The diameter distribution is the basis for predicting, for example, timber assortments of a stand. Usually the predicted diameter distribution is scaled so that the stem number (or basal area) corresponds to the measured value (or predicted future value), but it may be difficult to obtain a distribution that gives correct estimates for all known variables. Diameter distributions that are compatible with all available information can be obtained using an approach adopted from sampling theory, the calibration estimation. In calibration estimation, the original predicted frequencies are modified so that they respect a set of constraints, the calibration equations. In this paper, an example of utilizing diameter distributions in growth and yield predictions is presented. The example is based on individual tree growth models of Scots pine (Pinus sylvestris L.). Calibration estimation was utilized in predicting the diameter distribution at the beginning of the simulation period. Then, trees were picked from the distribution and their development was predicted with individual tree models. In predicting the current stand characteristics, calibrated diameter distributions proved to be efficient. However, in predicting future yields, calibration estimation did not significantly improve the accuracy of the results.


2010 ◽  
Vol 40 (5) ◽  
pp. 843-849 ◽  
Author(s):  
John B. Bradford ◽  
Anthony W. D’Amato ◽  
Brian J. Palik ◽  
Shawn Fraver

Growth dominance is a relatively new, simple, quantitative metric of within-stand individual tree growth patterns, and is defined as positive when larger trees in the stand display proportionally greater growth than smaller trees, and negative when smaller trees display proportionally greater growth than larger trees. We examined long-term silvicultural experiments in red pine ( Pinus resinosa Ait.) to characterize how stand age, thinning treatments (thinned from above, below, or both), and stocking levels (residual basal area) influence stand-level growth dominance through time. In stands thinned from below or from both above and below, growth dominance was not significantly different from zero at any age or stocking level. Growth dominance in stands thinned from above trended from negative at low stocking levels to positive at high stocking levels and was positive in young stands. Growth dominance in unthinned stands was positive and increased with age. These results suggest that growth dominance provides a useful tool for assessing the efficacy of thinning treatments designed to reduce competition between trees and promote high levels of productivity across a population, particularly among crop trees.


Sign in / Sign up

Export Citation Format

Share Document