scholarly journals 0306 Corticotropin-Releasing Hormone Receptor 1 Gene Polymorphism Modulates Cognitive Flexibility Following Acute Stress and Total Sleep Deprivation

SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A115-A116
Author(s):  
B C Satterfield ◽  
I Anlap ◽  
S L Esbit ◽  
W D Killgore

Abstract Introduction Dynamic decision processes requiring flexible updating of information are impaired by stress and sleep loss, both of which activate the hypothalamic-pituitary-adrenal (HPA) stress response. Corticotropin-releasing hormone (CRH) initiates the HPA pathway. The CRH receptor (CRHR1) gene contains a single nucleotide polymorphism that modulates this response. We investigated whether cognitive flexibility is affected by CRHR1 polymorphism following a night of acute stress and total sleep deprivation (TSD). Methods N=46 healthy, young adults (21.8±3.4y; 21 females) participated in an in-laboratory 31h sleep deprivation study. Beginning at 19:30 until 07:30, the Maastricht Acute Stress Test (MAST) was administered every 4h. The MAST alternates a cold pressor task with an oral subtraction task five times in a single bout. At 29h wakefulness, subjects performed a novel go/no-go reversal learning task. Stimulus-response rules were presented at the beginning of the task, and subjects were asked to either respond or withhold a response to the presented stimuli while receiving accuracy feedback. Halfway through the task, the stimulus-response rules were reversed. Performance was assessed by discriminability index (d’), hit rate (HR), and false alarm rate (FAR). Saliva samples were collected immediately prior, immediately after, and 30min after each MAST and assayed for cortisol. One saliva sample from each subject was assayed for CRHR1 genotype. Results CRHR1 genotypes were in Hardy-Weinberg equilibrium (χ 2=2.97, p=0.08). Mixed effects ANOVA with fixed effects of CRHR1 genotype, pre/post-reversal, and their interaction found a significant CRHR1 by reversal interaction for d’ (F2,319=3.88, p=0.022) and HR (F2,319=3.16, p=0.044) following a night of stress and TSD. No such interaction was found at well-rested baseline (d’: F2,319=2.51, p=0.083; HR: F2,319=1.55, p=0.213). Subjects homozygous for the T allele had higher mean post-MAST cortisol levels (0.40±0.06 µg/dL) with better pre-reversal performance, but worse post-reversal performance compared to heterozygous and homozygous G allele carriers. Conclusion CRHR1 genotype modulates dynamic decision making following a night of acute stress and TSD. A higher cortisol stress response (T/T genotype) is beneficial to maintaining task relevant information (stability), but significantly impairs the ability to update task-relevant information following a change in situational demands (flexibility). Support CDMRP grant W81XWH-17-C-0088

2015 ◽  
Vol 61 ◽  
pp. 12
Author(s):  
Pearl La Marca-Ghaemmaghami ◽  
Sara M. Dainese ◽  
Roberto La Marca ◽  
Roland Zimmermann ◽  
Ulrike Ehlert

2019 ◽  
Author(s):  
Zhong Xie ◽  
Peter Penzes ◽  
Deepak P. Srivastava

AbstractCorticotropin-releasing hormone (CRH) is produced in response to stress. This hormone plays a key role in mediating neuroendocrine, behavioral, and autonomic responses to stress. The CRH receptor 1 (CRHR1) is expressed in multiple brain regions including the cortex and hippocampus. Previous studies have shown that activation of CRHR1 by CRH results in the rapid loss of dendritic spines. Exchange protein directly activated by cAMP (EPAC2, also known as RapGEF4), a guanine nucleotide exchange factor (GEF) for the small GTPase Rap, has been linked with CRHR1 signaling. EPAC2 plays a critical role in regulating dendritic spine morphology and number in response to several extracellular signals. But whether EPAC2 links CRHR1 with dendritic spine remodeling is unknown. Here we show that CRHR1 is highly enriched in the dendritic spines of primary cortical neurons. Furthermore, we find that EPAC2 and CRHR1 co-localize in cortical neurons. Critically, short hairpin RNA-mediated knockdown of Epac2 abolished CRH-mediated spine loss in primary cortical neurons. Taken together, our data indicate that EPAC2 is required for the rapid loss of dendritic spines induced by CRH. These findings identify a novel pathway by which acute exposure to CRH may regulate synaptic structure and ultimately responses to acute stress.


2017 ◽  
Vol 232 (3) ◽  
pp. R161-R172 ◽  
Author(s):  
Roman A Romanov ◽  
Alán Alpár ◽  
Tomas Hökfelt ◽  
Tibor Harkany

Hormonal responses to acute stress rely on the rapid induction of corticotropin-releasing hormone (CRH) production in the mammalian hypothalamus, with subsequent instructive steps culminating in corticosterone release at the periphery. Hypothalamic CRH neurons in the paraventricular nucleus of the hypothalamus are therefore considered as ‘stress neurons’. However, significant morphological and functional diversity among neurons that can transiently produce CRH in other hypothalamic nuclei has been proposed, particularly as histochemical and molecular biology evidence associates CRH to both GABA and glutamate neurotransmission. Here, we review recent advances through single-cell RNA sequencing and circuit mapping to suggest that CRH production reflects a state switch in hypothalamic neurons and thus confers functional competence rather than being an identity mark of phenotypically segregated neurons. We show that CRH mRNA transcripts can therefore be seen in GABAergic, glutamatergic and dopaminergic neuronal contingents in the hypothalamus. We then distinguish ‘stress neurons’ of the paraventricular nucleus that constitutively express secretagogin, a Ca2+ sensor critical for the stimulus-driven assembly of the molecular machinery underpinning the fast regulated exocytosis of CRH at the median eminence. Cumulatively, we infer that CRH neurons are functionally and molecularly more diverse than previously thought.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Ricardo Borges Machado ◽  
Sergio Tufik ◽  
Deborah Suchecki

Studies have shown that sleep recovery following different protocols of forced waking varies according to the level of stress inherent to each method. Sleep deprivation activates the hypothalamic-pituitary-adrenal axis and increased corticotropin-releasing hormone (CRH) impairs sleep. The purpose of the present study was to evaluate how manipulations of the CRH system during the sleep deprivation period interferes with subsequent sleep rebound. Throughout 96 hours of sleep deprivation, separate groups of rats were treated i.c.v. with vehicle, CRH or with alphahelical , a CRH receptor blocker, twice/day, at 07:00 h and 19:00 h. Both treatments impaired sleep homeostasis, especially in regards to length of rapid eye movement sleep (REM) and theta/delta ratio and induced a later decrease in NREM and REM sleep and increased waking bouts. These changes suggest that activation of the CRH system impact negatively on the homeostatic sleep response to prolonged forced waking. These results indicate that indeed, activation of the HPA axis—at least at the hypothalamic level—is capable to reduce the sleep rebound induced by sleep deprivation.


2001 ◽  
Vol 73 (5) ◽  
pp. 293-301 ◽  
Author(s):  
Toshihiro Imaki ◽  
Harumi Katsumata ◽  
Mariko Miyata ◽  
Mitsuhide Naruse ◽  
Junko Imaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document