117 Comparison of Various Methods to Differentiate Resilience and Vulnerability to Sleep Loss Using Self-Rated Measures

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A48-A48
Author(s):  
Courtney Casale ◽  
Erika Yamazaki ◽  
Tess Brieva ◽  
Caroline Antler ◽  
Namni Goel

Abstract Introduction There are robust, trait-like individual differences in subjective perceptions in response to sleep restriction (SR) and total sleep deprivation (TSD). How to best define neurobehavioral resilience and vulnerability to sleep loss remains an open question. We compared multiple approaches and cutoff thresholds for defining resilience and vulnerability using scores on the Karolinska Sleepiness Scale (KSS) and the Profile of Mood States Fatigue and Vigor (POMS-F and POMS-V) subscales. Methods Forty-one adults (33.9±8.9y;18 females) participated in a 13-night experiment (two baseline nights [10h-12h time in bed, TIB], 5 SR nights [4h TIB], 4 recovery nights [12h TIB], and 36h TSD). The KSS, POMS-F, and POMS-V were administered every 2h during wakefulness. Resilience and vulnerability were defined by the following: average score during SR1-5, average change from baseline to SR1-5, and variance during SR1-5. Resilient and vulnerable groups were defined by the following cutoffs: the top and bottom 12.5%, 20%, 25%, 33%, 50%, and +/-1 standard deviation. Bias-corrected and accelerated bootstrapped t-tests compared the scores of resilient and vulnerable groups during baseline and across SR1-5. Kendall’s tau correlations compared the ranking of individuals in each group (tau=0.4:moderate,0.7:strong). Results Resilient and vulnerable groups for POMS-F, as defined by all three approaches, significantly differed in their scores at all cutoffs during SR. However, only raw score and change from baseline approaches defined significantly different resilient and vulnerable groups during SR for KSS, and only raw score and variance approaches defined significantly different groups during SR for POMS-V. Notably, raw scores at baseline significantly differed between resilient and vulnerable groups for all measures. Correlations revealed moderate to strong associations between all three approaches at all cutoffs for POMS-F, between raw score and change from baseline approaches for KSS, and between raw score and variance approaches for POMS-V. Conclusion Defining resilience and vulnerability on self-rated measures by change from baseline was comparable to using raw score for KSS and POMS-F, whereas defining these groups by variance was comparable for POMS-F and POMS-V. Differences across methods may be due to the differential impact of SR on these various distinct subjective states. Support (if any) ONR Award No. N00014-11-1-0361;NIH UL1TR000003;NASA NNX14AN49G and 80NSSC20K0243;NIH R01DK117488

SLEEP ◽  
2021 ◽  
Author(s):  
Courtney E Casale ◽  
Erika M Yamazaki ◽  
Tess E Brieva ◽  
Caroline A Antler ◽  
Namni Goel

Abstract Study Objectives Although trait-like individual differences in subjective responses to sleep restriction (SR) and total sleep deprivation (TSD) exist, reliable characterizations remain elusive. We comprehensively compared multiple methods for defining resilience and vulnerability by subjective metrics. Methods 41 adults participated in a 13-day experiment:2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The Karolinska Sleepiness Scale (KSS) and the Profile of Mood States Fatigue (POMS-F) and Vigor (POMS-V) were administered every 2h. Three approaches (Raw Score [average SR score], Change from Baseline [average SR minus average baseline score], and Variance [intraindividual SR score variance]), and six thresholds (±1 standard deviation, and the highest/lowest scoring 12.5%, 20%, 25%, 33%, 50%) categorized Resilient/Vulnerable groups. Kendall’s tau-b correlations compared the group categorization’s concordance within and between KSS, POMS-F, and POMS-V scores. Bias-corrected and accelerated bootstrapped t-tests compared group scores. Results There were significant correlations between all approaches at all thresholds for POMS-F, between Raw Score and Change from Baseline approaches for KSS, and between Raw Score and Variance approaches for POMS-V. All Resilient groups defined by the Raw Score approach had significantly better scores throughout the study, notably including during baseline and recovery, whereas the two other approaches differed by measure, threshold, or day. Between-measure correlations varied in strength by measure, approach, or threshold. Conclusion Only the Raw Score approach consistently distinguished Resilient/Vulnerable groups at baseline, during sleep loss, and during recovery‒‒we recommend this approach as an effective method for subjective resilience/vulnerability categorization. All approaches created comparable categorizations for fatigue, some were comparable for sleepiness, and none were comparable for vigor. Fatigue and vigor captured resilience/vulnerability similarly to sleepiness but not each other.


2021 ◽  
Vol 3 (3) ◽  
pp. 442-448
Author(s):  
Christiana Harous ◽  
Gregory D. Roach ◽  
Thomas G. Kontou ◽  
Ashley J. Montero ◽  
Nicole Stuart ◽  
...  

Sleep loss causes mood disturbance in non-clinical populations under severe conditions, i.e., two days/nights of sleep deprivation or a week of sleep restriction with 4–5 h in bed each night. However, the effects of more-common types of sleep loss on mood disturbance are not yet known. Therefore, the aim of this study was to examine mood disturbance in healthy adults over a week with nightly time in bed controlled at 5, 6, 7, 8 or 9 h. Participants (n = 115) spent nine nights in the laboratory and were given either 5, 6, 7, 8 or 9 h in bed over seven consecutive nights. Mood was assessed daily using the Profile of Mood States (POMS-2). Mixed-linear effects models examined the effect of time in bed on total mood disturbance and subscales of anger-hostility, confusion-bewilderment, depression-dejection, fatigue-inertia, tension-anxiety, vigour-activity and friendliness. There was no effect of time in bed on total mood disturbance (F(4, 110.42) = 1.31, p = 0.271) or any of the subscales except fatigue-inertia. Fatigue-inertia was higher in the 5 h compared with the 9 h time in bed condition (p = 0.012, d = 0.75). Consecutive nights of moderate sleep loss (i.e., 5–7 h) does not affect mood but does increase fatigue in healthy males.


SLEEP ◽  
2020 ◽  
Author(s):  
Erika M Yamazaki ◽  
Caroline A Antler ◽  
Charlotte R Lasek ◽  
Namni Goel

Abstract Study Objectives The amount of recovery sleep needed to fully restore well-established neurobehavioral deficits from sleep loss remains unknown, as does whether the recovery pattern differs across measures after total sleep deprivation (TSD) and chronic sleep restriction (SR). Methods In total, 83 adults received two baseline nights (10–12-hour time in bed [TIB]) followed by five 4-hour TIB SR nights or 36-hour TSD and four recovery nights (R1–R4; 12-hour TIB). Neurobehavioral tests were completed every 2 hours during wakefulness and a Maintenance of Wakefulness Test measured physiological sleepiness. Polysomnography was collected on B2, R1, and R4 nights. Results TSD and SR produced significant deficits in cognitive performance, increases in self-reported sleepiness and fatigue, decreases in vigor, and increases in physiological sleepiness. Neurobehavioral recovery from SR occurred after R1 and was maintained for all measures except Psychomotor Vigilance Test (PVT) lapses and response speed, which failed to completely recover. Neurobehavioral recovery from TSD occurred after R1 and was maintained for all cognitive and self-reported measures, except for vigor. After TSD and SR, R1 recovery sleep was longer and of higher efficiency and better quality than R4 recovery sleep. Conclusions PVT impairments from SR failed to reverse completely; by contrast, vigor did not recover after TSD; all other deficits were reversed after sleep loss. These results suggest that TSD and SR induce sustained, differential biological, physiological, and/or neural changes, which remarkably are not reversed with chronic, long-duration recovery sleep. Our findings have critical implications for the population at large and for military and health professionals.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A47-A48
Author(s):  
Erika Yamazaki ◽  
Tess Brieva ◽  
Courtney Casale ◽  
Caroline Antler ◽  
Namni Goel

Abstract Introduction There are substantial, stable individual differences in cognitive performance resulting from sleep restriction (SR) and total sleep deprivation (TSD). The best method for defining cognitive resilience and vulnerability to sleep loss remains an unanswered, yet important question. To investigate this, we compared multiple approaches and cutoff thresholds to define resilience and vulnerability using the 10-minute Psychomotor Vigilance Test (PVT). Methods Forty-one healthy adults (ages 21-49; mean±SD, 33.9±8.9y; 18 females) participated in a 13-night experiment [2 baseline nights (10h-12h time-in-bed, TIB), 5 SR nights (4h TIB), 4 recovery nights (12h TIB), and 36h TSD]. The PVT was administered every 2h during wakefulness. PVT lapses (reaction time [RT]>500 ms) and 1/RT (response speed) were measured. Resilient and vulnerable groups were defined by three approaches: average performance during SR1-5, average performance change from baseline to SR1-5, and variance in performance during SR1-5. Within each approach, resilient/vulnerable groups were defined by +/- 1 standard deviation and by the top and bottom 12.5%, 20%, 25%, 33%, 50%. Bias-corrected and accelerated bootstrapped t-tests compared PVT performance between the resilient and vulnerable groups during baseline and SR1-5. Kendall’s tau correlations compared the ranking of individuals in each group. Results T-tests revealed that the resilient and vulnerable PVT lapses groups, defined by all three approaches, had significantly different mean PVT lapses at all cutoffs. Resilient and vulnerable PVT 1/RT groups, defined by raw scores and by change from baseline, had significantly different mean PVT 1/RT at all cutoffs. However, resilient/vulnerable PVT 1/RT groups defined by variance only differed at the 33% and 50% cutoffs. Notably, raw scores at baseline significantly differed between resilient/vulnerable groups for both PVT measures. Variance vs. raw scores and variance vs. change from baseline had the lowest correlation coefficients for both PVT measures. Conclusion Defining resilient and vulnerable groups by raw scores during SR1-5 produced the clearest differentiation between resilient and vulnerable groups at every cutoff threshold for PVT lapses and response speed. As such, we propose that using PVT raw score is the optimal approach to define resilient and vulnerable groups for behavioral attention performance during sleep loss. Support (if any) ONR Award No.N00014-11-1-0361;NIH UL1TR000003;NASA NNX14AN49G and 80NSSC20K0243;NIH R01DK117488


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A117-A118
Author(s):  
G de Queiroz Campos ◽  
D P Dickstein ◽  
M A Carskadon ◽  
J M Saletin

Abstract Introduction Short sleep contributes to attention failure in conditions such as ADHD. Whether sleep loss affects attentional processes as a task varies in cognitive interference is unclear. We used a multi-source interference task (MSIT) in a sleep restriction paradigm in children with a range of ADHD symptoms to examine how short sleep disrupts attention in these youth. Methods Thirteen children (7F, 11.7±1.28 years) with a range of ADHD symptom severity completed a repeated-measures experiment on two consecutive nights in the laboratory: baseline (BSLN; 9.5h time-in-bed) and sleep restriction (SR; 4h time-in-bed). Each morning they took part in an fMRI session including the MSIT, in which participants respond to a series of 3-digit numbers by indicating which digit is different on no-interference (e.g., 003; correct=3) or interference (e.g., 311, correct=3) trials. Performance measures were inverse reaction time (1/RT) and accuracy. A two-way within-subject ANOVA assessed performance across interference and sleep conditions respectively. Results 1/RT showed main-effects of sleep loss (BSLN vs. SR; F(1,148)=4.01;p<0.05;η 2=0.026) and trial type (no-interference vs. interference; F(1,148)=24.7;p<0.001;η 2=0.143). Responses were slower for interference (BSLN RT: 799.3ms, SR RT: 895.8ms) than no-interference (BSLN RT: 653.2ms, SR RT: 697.4ms) trials. No interaction between interference and sleep loss was found (F(1,148)=0.11;p>0.05;η 2=0.001). Likewise, accuracy was lower (F(1,148) = 31.1, p<.001;η 2=0.174) in interference trials (73.5%) than in no-interference trials (92.2%), however with no effect of sleep loss, nor an interaction of interference and sleep loss (all p’s > .05). Conclusion These data provide evidence that partial sleep loss disrupts attention processes in children, yet these differences do not appear to depend on cognitive interference in our sample. Future analyses will examine whether ADHD symptoms distinguish individual differences, as well as analyze fMRI data to probe neural processes underlying attention control. Support K01MH09854 (to JMS); Brown University UTRA (to GDQC).


SLEEP ◽  
2021 ◽  
Author(s):  
Erika M Yamazaki ◽  
Courtney E Casale ◽  
Tess E Brieva ◽  
Caroline A Antler ◽  
Namni Goel

Abstract Study Objectives Sleep restriction (SR) and total sleep deprivation (TSD) reveal well-established individual differences in Psychomotor Vigilance Test (PVT) performance. While prior studies have used different methods to categorize such resiliency/vulnerability, none have systematically investigated whether these methods categorize individuals similarly. Methods 41 adults participated in a 13-day laboratory study consisting of 2 baseline, 5 SR, 4 recovery, and one 36h TSD night. The PVT was administered every 2h during wakefulness. Three approaches (Raw Score [average SR performance], Change from Baseline [average SR minus average baseline performance], and Variance [intraindividual variance of SR performance]), and within each approach, six thresholds (±1 standard deviation and the best/worst performing 12.5%, 20%, 25%, 33%, and 50%) classified Resilient/Vulnerable groups. Kendall’s tau-b correlations examined the concordance of group categorizations of approaches within and between PVT lapses and 1/reaction time (RT). Bias-corrected and accelerated bootstrapped t-tests compared group performance. Results Correlations comparing the approaches ranged from moderate to perfect for lapses and zero to moderate for 1/RT. Defined by all approaches, the Resilient groups had significantly fewer lapses on nearly all study days. Defined by the Raw Score approach only, the Resilient groups had significantly faster 1/RT on all study days. Between-measures comparisons revealed significant correlations between the Raw Score approach for 1/RT and all approaches for lapses. Conclusion The three approaches defining vigilant attention resiliency/vulnerability to sleep loss resulted in groups comprised of similar individuals for PVT lapses but not for 1/RT. Thus, both method and metric selection for defining vigilant attention resiliency/vulnerability to sleep loss is critical.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A50-A50
Author(s):  
Caroline Antler ◽  
Erika Yamazaki ◽  
Courtney Casale ◽  
Tess Brieva ◽  
Namni Goel

Abstract Introduction The Psychomotor Vigilance Test (PVT), a behavioral attention measure widely used to capture sleep loss deficits, is available in 10-minute (PVT10) and 3-minute (PVT3) versions. The PVT3 is a briefer and presumably comparable assessment to the more commonly used PVT10 yet the relationship between the measures from the two versions across specific time points and in recovery after sleep loss has not been investigated. Repeated measures correlation (rmcorr) evaluated within-individual associations between measures on the PVT10 and PVT3 throughout a highly controlled sleep deprivation study. Methods Forty-one healthy adults (ages 21-49; mean±SD, 33.9±8.9y; 18 females) participated in a 13-night experiment consisting of 2 baseline nights (10h-12h time in bed, TIB) followed by 5 sleep restriction (SR1-5) nights (4h TIB), 4 recovery nights (R1-R4; 12h TIB), and 36h total sleep deprivation (TSD). A neurobehavioral test battery, including the PVT10 and PVT3 was completed every 2h during wakefulness. Rmcorr compared PVT10 and PVT3 lapses (reaction time [RT] >355ms [PVT3] or >500ms [PVT10]) and response speed (1/RT) by examining correlations by day (e.g., baseline day 2) and by time point (e.g., 1000h-2000h). Rmcorr ranges were as follows: 0.1-0.3, small; 0.3-0.5, moderate; 0.5-0.7, large; 0.7-0.9, very large. Results All time point correlations (1000h-2000h) were significant (moderate to large for lapses; large to very large for 1/RT). Lapses demonstrated large correlations during R1, moderate correlations during SR1-SR5 and TSD, and small correlations during R2 and R4, and showed no significant correlations during baseline or R3. 1/RT correlations were large for SR1-SR4 and TSD, moderate for SR5 and R1-R4, and small for baseline. Conclusion The various PVT relationships were consistently strong at specific times of day throughout the study. In addition, higher correlations observed for 1/RT relative to lapses and during SR and TSD relative to baseline and recovery suggest that the PVT10 and PVT3 are most similar and best follow performance when most individuals are experiencing behavioral attention deficits during sleep loss. Both measures track SR and TSD performance well, with 1/RT presenting as more comparable between the PVT10 and PVT3. Support (if any) ONR Award N00014-11-1-0361; NIH UL1TR000003; NASA NNX14AN49G and 80NSSC20K0243; NIHR01DK117488


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A52-A52
Author(s):  
Tess Brieva ◽  
Courtney Casale ◽  
Erika Yamazaki ◽  
Caroline Antler ◽  
Namni Goel

Abstract Introduction Substantial individual differences exist in cognitive deficits due to sleep restriction (SR) and total sleep deprivation (TSD), but the best approach to define such resilience and vulnerability remains a critical question. We compared multiple approaches and cutoff thresholds to define resilience and vulnerability using the Digit Symbol Substitution Task (DSST) and the Digit Span Task (DST). Methods Forty-one healthy adults (mean±SD ages,33.9±8.9y) participated in a 13-night experiment [two baseline nights (10h-12h time-in-bed, TIB), 5 SR nights (4h TIB), 4 recovery nights (12h TIB), and 36h TSD]. The DSST [measuring cognitive throughput] and DST [measuring working memory] were administered every 2h during wakefulness. Resilient/vulnerable groups were defined by average performance (DSST: number correct; DST: total correct from forward and backward versions) during SR1-5, average performance change from baseline during SR1-5, and variance in performance during SR1-5. Within each approach, groups were defined by +/-1 standard deviation (SD) and the top and bottom 12.5%, 20%, 25%, 33%, 50%. Bias-corrected and accelerated bootstrapped t-tests compared performance between resilient and vulnerable groups during baseline and SR1-5. Kendall’s tau correlations compared the ranking of individuals in each group. Results T-tests showed significant differences between resilient/vulnerable groups at all raw score cutoffs for DSST and DST performance during SR and at baseline. Change from baseline t-tests showed significant differences during SR between the DSST groups only at 12.5%, 20%, and SD whereas DST t-tests showed significant differences at all cutoffs. Variance t-tests revealed a significant difference between the DSST groups only at 25% during SR. For the DSST, the variance vs. change from baseline comparison at all cutoffs and between raw score vs. change from baseline for the SD cutoff showed moderate correlations, and for the DST, the raw score vs. change from baseline correlation was moderate for 25% and 33%. Conclusion The resilient/vulnerable groups defined by raw score were more consistent than those defined by change from baseline or variance, and raw score did not track these approaches well. As such, raw score is the optimal approach to define cognitive throughput and working memory performance resiliency/vulnerability during sleep loss. Support (if any) ONR Award No. N00014-11-1-0361;NIH UL1TR000003;NASA NNX14AN49G and 80NSSC20K0243;NIH R01DK117488


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A49-A50
Author(s):  
Caroline Antler ◽  
Erika Yamazaki ◽  
Tess Brieva ◽  
Courtney Casale ◽  
Namni Goel

Abstract Introduction The Psychomotor Vigilance Test (PVT) is a behavioral attention measure widely used to describe sleep loss deficits. Although there are reported differences in PVT performance for various demographic groups, no study has examined the relationship between measures on the 10-minute PVT (PVT10) and the 3-minute PVT (PVT3) within sex, age, and body mass index (BMI) groups throughout a highly controlled sleep deprivation study. Methods Forty-one healthy adults (mean±SD ages, 33.9±8.9y) participated in a 13-night experiment [2 baseline nights (10h-12h time in bed, TIB) followed by 5 sleep restriction (SR1-5) nights (4h TIB), 4 recovery nights (R1-R4; 12h TIB), and 36h total sleep deprivation (TSD)]. A neurobehavioral test battery, including the PVT10 and PVT3 was completed every 2h during wakefulness. Repeated measures correlation (rmcorr) compared PVT10 and PVT3 lapses (reaction time [RT] >355ms [PVT3] and >500ms [PVT10]) and response speed (1/RT) by examining correlations by day (e.g., baseline day 2) and time point (e.g., 1000h-2000h) within sex groups (18 females), within age groups defined by a median split (median=32, range=21-49y), and within BMI groups defined by a median split (median=25, range=17-31). Results PVT10 and PVT3 1/RT was significantly correlated at all study days and time points excluding at baseline for the younger group and at R2 for the higher BMI group. PVT10 and PVT3 lapses showed overall lower correlations across the study relative to 1/RT. Lapses were not significantly correlated at baseline for any group, for males across recovery (R1-R4), for the high BMI group at R2-R4, for the older group at R2-R3, or for the younger group at SR5 or R3. Conclusion Differentiating participants based on age, sex, or BMI revealed important variation in the relationship between PVT10 and PVT3 measures across the study. Surprisingly, lapses were not significantly correlated at baseline for any demographic group or across recovery for males or the high BMI or older group. Thus, PVT10 and PVT3 lapses may be less comparable in certain populations when well-rested. These findings add to a growing literature suggesting demographic factors may be important factors to consider when evaluating the effects of sleep loss. Support (if any) ONR Award N00014-11-1-0361;NIH UL1TR000003;NASA NNX14AN49G and 80NSSC20K0243; NIHR01DK117488


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A56-A56
Author(s):  
Mark McCauley ◽  
Peter McCauley ◽  
Hans Van Dongen

Abstract Introduction In commercial aviation and other operational settings where biomathematical models of fatigue are used for fatigue risk management, accurate prediction of recovery during rest periods following duty periods with sleep loss and/or circadian misalignment is critical. The recuperative potential of recovery sleep is influenced by a variety of factors, including long-term, allostatic effects of prior sleep/wake history. For example, recovery tends to be slower after sustained sleep restriction versus acute total sleep deprivation. Capturing such dynamics has proven to be challenging. Methods Here we focus on the dynamic biomathematical model of McCauley et al. (2013). In addition to a circadian process, this model features differential equations for sleep/wake regulation including a short-term sleep homeostatic process capturing change in the order of hours/days and a long-term allostatic process capturing change in the order of days/weeks. The allostatic process modulates the dynamics of the homeostatic process by shifting its equilibrium setpoint, which addresses recently observed phenomena such as reduced vulnerability to sleep loss after banking sleep. It also differentiates the build-up and recovery rates of fatigue under conditions of chronic sleep restriction versus acute total sleep deprivation; nonetheless, it does not accurately predict the disproportionately rapid recovery seen after total sleep deprivation. To improve the model, we hypothesized that the homeostatic process may also modulate the allostatic process, with the magnitude of this effect scaling as a function of time awake. Results To test our hypothesis, we added a parameter to the model to capture modulation by the homeostatic process of the allostatic process build-up during wakefulness and dissipation during sleep. Parameter estimation using previously published laboratory datasets of fatigue showed this parameter as significantly different from zero (p<0.05) and yielding a 10%–20% improvement in goodness-of-fit for recovery without adversely affecting goodness-of-fit for pre-recovery days. Conclusion Inclusion of a modulation effect of the allostatic process by the homeostatic process improved prediction accuracy in a variety of sleep loss and circadian misalignment scenarios. In addition to operational relevance for duty/rest scheduling, this finding has implications for understanding mechanisms underlying the homeostatic and allostatic processes of sleep/wake regulation. Support (if any) Federal Express Corporation


Sign in / Sign up

Export Citation Format

Share Document