Increased Chin Muscle Tone during All Sleep Stages in Children Taking SSRI Antidepressants and in Children with Narcolepsy Type 1

SLEEP ◽  
2021 ◽  
Author(s):  
Raffaele Ferri ◽  
Maria P Mogavero ◽  
Oliviero Bruni ◽  
Giuseppe Plazzi ◽  
Carlos H Schenck ◽  
...  

Abstract Study Objectives To assess if selective serotonin reuptake inhibitor (SSRI) antidepressants are able to modify the chin EMG tone during sleep also in children. Methods Twenty-three children and adolescents (12 girls, mean age 14.1 years, SD 2.94) under therapy with antidepressant for their mood disorder were consecutively recruited and had a PSG recording. Twenty-one were taking were taking SSRI and treatment duration was 2-12 months. An age- and sex matched group of 33 control children (17 girls, mean age 14.2 years, SD 2.83) and 24 children with narcolepsy type 1 (12 girls, mean age 13.7 years, SD 2.80) were also included. The Atonia Index was then computed for each NREM sleep stage and for REM sleep, also all EMG activations were counted. Results Atonia Index in all sleep stages was found to be significantly reduced in children with narcolepsy followed by the group taking SSRI antidepressants and the number of EMG activations was also increased in both groups. Fluoxetine, in particular, was found to be significantly associated with reduced Atonia index during NREM sleep stages N1, N2, and N3, and with increased number of EMG activations/hour during sleep stage N3. Conclusions Similarly to adults, SSRI antidepressants are able to modify the chin EMG tone also in children during REM sleep, as well as during NREM sleep stages. Different pharmacological properties of the different SSRI might explain the differential effect on chin tone during sleep found in this study.

Cephalalgia ◽  
2010 ◽  
Vol 31 (3) ◽  
pp. 286-290 ◽  
Author(s):  
Dagny Holle ◽  
Thomas E Wessendorf ◽  
Sebastian Zaremba ◽  
Steffen Naegel ◽  
Hans-Christoph Diener ◽  
...  

Background: Hypnic headache (HH) is a rare primary headache disorder characterized by strictly sleep-related headache attacks. Most patients are over the age of 50 and usually awake at the same time at night with dull bilateral head pain. The pathophysiology of this headache disorder is still enigmatic but association with rapid eye movement (REM) sleep and sleep-disordered breathing (SDB) has been suggested. Methods: Six patients with HH according to the current International Classification of Headache Disorders (ICHD-II) criteria (code 4.5) were investigated. Serial polysomnography (PSG) was performed in each patient for four consecutive nights. Results: A total of 22 HH attacks were recorded from all patients during PSG. Six of the monitored headache attacks arose from REM sleep; 16 attacks, however, arose from different non-REM (NREM) sleep stages. Five patients showed an increased apnoea/hypopnoea index (>5), indicating obstructive sleep apnoea (OSA) on some but not the majority of nights. Headache onset and occurrence of SDB were not temporally connected. Conclusions: This prospective study shows that the onset of HH was not associated with sleep stage. These results contradict the current belief that REM sleep and SDB play a crucial role in the pathophysiology of HH.


SLEEP ◽  
2021 ◽  
Author(s):  
Andreas Brink-Kjær ◽  
Matteo Cesari ◽  
Friederike Sixel-Döring ◽  
Brit Mollenhauer ◽  
Claudia Trenkwalder ◽  
...  

Abstract Study objectives Patients diagnosed with isolated rapid eye movement (REM) sleep behavior disorder (iRBD) and Parkinson’s disease (PD) have altered sleep stability reflecting neurodegeneration in brainstem structures. We hypothesize that neurodegeneration alters the expression of cortical arousals in sleep. Methods We analyzed polysomnography data recorded from 88 healthy controls (HC), 22 iRBD patients, 82 de novo PD patients without RBD and 32 with RBD (PD+RBD). These patients were also investigated at a 2-year follow-up. Arousals were analyzed using a previously validated automatic system, which used a central EEG lead, electrooculography, and chin electromyography. Multiple linear regression models were fitted to compare group differences at baseline and change to follow-up for arousal index (ArI), shifts in electroencephalographic signals associated with arousals, and arousal chin muscle tone. The regression models were adjusted for known covariates affecting the nature of arousal. Results In comparison to HC, patients with iRBD and PD+RBD showed increased ArI during REM sleep and their arousals showed a significantly lower shift in α-band power at arousals and a higher muscle tone during arousals. In comparison to HC, the PD patients were characterized by a decreased ArI in NREM sleep at baseline. ArI during NREM sleep decreased further at the 2-year follow-up, although not significantly Conclusions Patients with PD and iRBD present with abnormal arousal characteristics as scored by an automated method. These abnormalities are likely to be caused by neurodegeneration of the reticular activation system due to alpha-synuclein aggregation.


Author(s):  
T. Tanaka ◽  
H. Lange ◽  
R. Naquet

SUMMARY:A longitudinal study of the effects of sleep on amygdaloid kindling showed that kindling disrupted normal sleep patterns by reducing REM sleep and increasing awake time. Few interictal spike discharges were observed during the awake stage, while a marked increase in discharge was observed during the light and deep sleep stages. No discharges were observed during REM sleep. During the immediate post-stimulation period the nonstimulated amygdala showed a much higher rate of spike discharge. On the other hand, there was an increase in spike discharge in the stimulated amygdala during natural sleep without preceding amygdaloid stimulation. Amygdaloid stimulation at the generalized seizure threshold during each sleep stage resulted in a generalized convulsion.The influence of subcortical electrical stimulation on kindled amygdaloid convulsions was investigated in a second experiment. Stimulation of the centre median and the caudate nucleus was without effect on kindled convulsions, while stimulation of the mesencephalic reticular formation at high frequency (300 Hz) reduced the latency of onset of kindled generalized convulsions. Stimulation of the nucleus ventralis lateralis of the thalamus at low frequency (10 Hz) prolonged the convulsion latency, and at high current levels blocked the induced convulsion. Stimulation in the central gray matter at low frequency (10 Hz) also blocked kindled amygdaloid convulsions.


Neurology ◽  
2020 ◽  
pp. 10.1212/WNL.0000000000011157
Author(s):  
Elena Antelmi ◽  
Marco Filardi ◽  
Fabio Pizza ◽  
Stefano Vandi ◽  
Monica Moresco ◽  
...  

Objective:The aim was to study the effect of stable treatment with Sodium Oxybate (SO) on nocturnal REM sleep behavior disorder (RBD) and REM sleep without atonia (RSWA) that severely affected children with type 1 narcolepsy (NT1.Methods:Nineteen NT1 children and adolescents (nine females; mean age 12.5±2.7, mean disease duration: 3.4±1.6 years) underwent neurological investigations and video-polysomnography (v-PSG) at baseline and after three months of stable treatment with SO.v-PSG was independently analysed by two sleep experts, in order to rate RBD episodes. RSWA was automatically computed by means of the validated REM sleep atonia index (RAI).Results:Compared to baseline, RAI significantly improved (p< 0.05) and complex movements during REM sleep were remarkably reduced after stable treatment with SO. Compared to baseline, children also reported improvement in clinical complaints and showed a different nighttime sleep stage architecture.Conclusions:RBD and RSWA improved after treatment with SO, pointing to a direct role of the drug in modulating motor control during REM sleep.


2020 ◽  
Vol 14 ◽  
Author(s):  
Carlo Cipolli ◽  
Fabio Pizza ◽  
Claudia Bellucci ◽  
Michela Mazzetti ◽  
Giovanni Tuozzi ◽  
...  

The less rigid architecture of sleep in patients with narcolepsy type 1 (NT1) compared with healthy subjects may provide new insights into some unresolved issues of dream experience (DE), under the assumption that their DE frequencies are comparable. The multiple transition from wakefulness to REM sleep (sleep onset REM period: SOREMP) during the five trials of the Multiple Sleep Latency Test (MSLT) appears of particular interest. In MSLT studies, NT1 patients reported a DE after about 80% of SOREMP naps (as often as after nighttime REM sleep of themselves and healthy subjects), but only after about 30% of NREM naps compared to 60% of daytime and nighttime NREM sleep of healthy subjects. To estimate accurately the “real” DE frequency, we asked participants to report DE (“dream”) after each MSLT nap and, in case of failure, to specify if they were unable to retrieve any content (“white dream”) or DE did not occur (“no-dream”). The proportions of dreams, white dreams, and no dreams and the indicators of structural organization of DEs reported after NREM naps by 17 adult NT1 patients were compared with those reported by 25 subjects with subjective complaints of excessive daytime sleepiness (sc-EDS), who take multiple daytime NREM naps. Findings were consistent with the hypothesis of a failure in recall after awakening rather than in generation during sleep: white dreams were more frequent in NT1 patients than in sc-EDS subjects (42.86 vs 17.64%), while their frequency of dreams plus white dreams were similar (67.86 and 61.78%) and comparable with that of NREM-DEs in healthy subjects. The longer and more complex NREM-DEs of NT1 patients compared with sc-EDS subjects suggest that the difficulty in DE reporting depends on their negative attitude toward recall of contents less vivid and bizarre than those they usually retrieve after daytime SOREMP and nighttime REM sleep. As this attitude may be reversed by some recall training before MSLT, collecting wider amounts of DE reports after NREM naps would cast light on both the across-stage continuity in the functioning of cognitive processes underlying DE and the difference in content and structural organization of SOREM-DEs preceded by N1 or also N2 sleep.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A456-A457 ◽  
Author(s):  
L Menghini ◽  
V Alschuler ◽  
S Claudatos ◽  
A Goldstone ◽  
F Baker ◽  
...  

Abstract Introduction Commercial wearable devices have shown the capability of collecting and processing multisensor information (motion, cardiac activity), claiming to be able to measure sleep-wake patterns and differentiate sleep stages. While using these devices, users should be aware of their accuracy, sources of measurement error and contextual factors that may affect their performance. Here, we evaluated the agreement between Fitbit Charge 2™ and PSG in adults, considering effects of two different sleep classification methods and pre-sleep alcohol consumption. Methods Laboratory-based synchronized recordings of device and PSG data were obtained from 14 healthy adults (42.6±9.7y; 6 women), who slept between one and three nights in the lab, for a total of 27 nights of data. On 10 of these nights, participants consumed alcohol (up to 4 standard drinks) in the 2 hours before bedtime. Device performance relative to PSG was evaluated using epoch-by-epoch and Bland-Altman analyses, with device data obtained from a data-management platform, Fitabase, via two methods one that accounts for short wakes (SW, awakenings that last less than 180s) and one that does not (not-SW). Results SW and not-SW methods were similar in scoring (96.76% agreement across epochs), although the SW method had better accuracy for differentiating “light”, “deep”, and REM sleep; but produced more false positives in wake detection. The device (SW-method) classified epochs of wake, “light” (N1+N2), “deep” (N3) and REM sleep with 56%, 77%, 46%, and 62% sensitivity, respectively. Bland-Altman analysis showed that the device significantly underestimated “light” (~19min) and “deep” (~26min) sleep. Alcohol consumption enhanced PSG-device discrepancies, in particular for REM sleep (p=0.01). Conclusion Our results indicate promising accuracy in sleep-wake and sleep stage identification for this device, particularly when accounting for short wakes, as compared to PSG. Alcohol consumption, as well as other potential confounders that could affect measurement accuracy should be further investigated. Support This study was supported by the National Institute on Alcohol Abuse and Alcoholism (NIAAA) grant R21-AA024841 (IMC and MdZ). The content is solely the responsibility of the authors and does not necessarily represent the official views the National Institutes of Health.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Marcus Ng ◽  
Milena Pavlova

Since the formal characterization of sleep stages, there have been reports that seizures may preferentially occur in certain phases of sleep. Through ascending cholinergic connections from the brainstem, rapid eye movement (REM) sleep is physiologically characterized by low voltage fast activity on the electroencephalogram, REMs, and muscle atonia. Multiple independent studies confirm that, in REM sleep, there is a strikingly low proportion of seizures (~1% or less). We review a total of 42 distinct conventional and intracranial studies in the literature which comprised a net of 1458 patients. Indexed to duration, we found that REM sleep was the most protective stage of sleep against focal seizures, generalized seizures, focal interictal discharges, and two particular epilepsy syndromes. REM sleep had an additional protective effect compared to wakefulness with an average 7.83 times fewer focal seizures, 3.25 times fewer generalized seizures, and 1.11 times fewer focal interictal discharges. In further studies REM sleep has also demonstrated utility in localizing epileptogenic foci with potential translation into postsurgical seizure freedom. Based on emerging connectivity data in sleep, we hypothesize that the influence of REM sleep on seizures is due to a desynchronized EEG pattern which reflects important connectivity differences unique to this sleep stage.


2017 ◽  
Vol 75 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Richard E. Frye ◽  
Deborah F. Rosin ◽  
Adrian R. Morrison ◽  
Fidias E. Leon-Sarmiento ◽  
Richard L. Doty

ABSTRACT Objective: The nasal cycle, which is present in a significant number of people, is an ultradian side-to-side rhythm of nasal engorgement associated with cyclic autonomic activity. We studied the nasal cycle during REM/non-REM sleep stages and examined the potentially confounding influence of body position on lateralized nasal airflow. Methods: Left- and right-side nasal airflow was measured in six subjects during an eight-hour sleep period using nasal thermistors. Polysomnography was performed. Simultaneously, body positions were monitored using a video camera in conjunction with infrared lighting. Results: Significantly greater airflow occurred through the right nasal chamber (relative to the left) during periods of REM sleep than during periods of non-REM sleep (p<0.001). Both body position (p < 0.001) and sleep stage (p < 0.001) influenced nasal airflow lateralization. Conclusions: This study demonstrates that the lateralization of nasal airflow and sleep stage are related. Some types of asymmetrical somatosensory stimulation can alter this relationship.


Loquens ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 053
Author(s):  
Marisa Pedemonte ◽  
Marcela Díaz ◽  
Eduardo Medina-Ferret ◽  
Martín Testa

It is known that auditory information is continuously processed both during wakefulness and sleep. Consistently, it has been shown that sound stimulation mimicking tinnitus during sleep decreases the intensity of tinnitus and improves the patients’ quality of life. The mechanisms underlying this effect are not known. To begin to address this question, eleven patients suffering from tinnitus were stimulated with sound mimicking tinnitus at different sleep stages; 4 were stimulated in N2, 4 in stage N3 (slow waves sleep) and 3 in REM sleep (stage with Rapid Eyes Movements). Patients’ sleep stage was monitored through polysomnography, for sound stimulation application. Tinnitus level reported by subjects were compared the days before and after stimulation and statistically analyzed (paired Student t test). All patients stimulated at stage N2 reported significantly lower tinnitus intensity the day after stimulation, while none stimulated during stage N3 and only one out of three stimulated during REM sleep showed changes. These results are consistent with studies showing that sound stimulation during N2 (sleep stage with spindles) changes power spectrum and coherence of electroencephalographic signals, and suggest that the N2 sleep stage is a critical period for reducing tinnitus intensity using this therapeutic strategy, during which auditory processing networks are more malleable by sound stimulation.


2017 ◽  
Author(s):  
Elizaveta Solomonova ◽  
Simon Dubé ◽  
Cloé Blanchette-Carrière ◽  
Arnaud Samson-Richer ◽  
Michelle Carr ◽  
...  

Study objectives: Rapid eye movement (REM) sleep, non-rapid eye movement (NREM) sleep, and sleep spindles are all implicated in the consolidation of procedural memories. The relative contributions of sleep stages and sleep spindles was previously shown to depend on individual differences in task processing. Experience with Vipassana meditation is one such individual difference that has not been investigated in relation to sleep. Vipassana meditation is a form of mental training that enhances proprioceptive and somatic awareness and alters attentional style. The goal was thus to examine a potential moderating role for Vipassana meditation experience on sleep-dependent procedural memory consolidation.Methods: Groups of Vipassana meditation practitioners (N=20) and matched meditation-naïve controls (N=20) slept for a single daytime nap in the laboratory. Before and after the nap they completed a procedural task on the Wii Fit balance platform.Results: Meditators performed slightly better on the task before the nap, but the two groups improved similarly after sleep. The groups showed different patterns of sleep-dependent procedural memory consolidation: in meditators task learning was negatively correlated with density of fast and positively correlated with density of slow occipital spindles, while in controls task improvement was associated with increases in REM sleep. Meditation practitioners had a lower density of sleep spindles, especially in occipital regions.Conclusions: Results suggest that neuroplastic changes associated with sustained meditation practice may alter overall sleep architecture and reorganize sleep-dependent patterns of memory consolidation. The lower density of spindles in meditators may mean that meditation practice compensates for some of the memory functions of sleep.


Sign in / Sign up

Export Citation Format

Share Document