A Phylogenetic Study of the Blackbirds Based on Variation in Mitochondrial DNA Restriction Sites

1995 ◽  
Vol 44 (3) ◽  
pp. 409-420 ◽  
Author(s):  
Scott Freeman ◽  
Robert M. Zink
1985 ◽  
Vol 27 (3) ◽  
pp. 357-364 ◽  
Author(s):  
Lawrence R. Hale ◽  
Andrew T. Beckenbach

We have analysed mitochondrial DNA (mtDNA) from Pacific Northwest populations of Drosophila pseudoobscura, D. persimilis, and D. miranda using six restriction enzymes. We find that HpaII restriction sites are hypervariable compared to the other enzymes used. This hypervariability allows construction of a maximum parsimony map linking each mtDNA genotype. Small insertions, possibly tandem duplications, appear to have arisen concomitantly with, or subsequent to, speciation events, perhaps within the A + T rich region. Convergence of mtDNA genotypes is also evident. Unlike findings for other populations of these species, we find little evidence of mitochondrial introgression between D. pseudoobscura and D. persimilis, despite their ability to produce fertile hybrid females.Key words: mitochondrial DNA, restriction endonucleases, Drosophila, evolution.


1986 ◽  
Vol 43 (10) ◽  
pp. 1866-1872 ◽  
Author(s):  
Lucia Irene González-Villaseñor ◽  
Amanda M. Burkhoff ◽  
Víctor Corces ◽  
Dennis A. Powers

Analysis of mitochondrial DNA endonuclease restriction patterns is a powerful tool for studying related species and variation within species. The ethidium bromide staining technique has limited the number of digestions of mitochondrial DNA per individual. Because 32P-end-labeling also imposes severe limitations, we have resorted to cloning the fish (Fundulus heteroclitus) mitochondrial genome in the lambda replacement vector EMBL-3. The clone was used as a radioactive probe via Southern blotting to detect mitochondrial DNA restriction fragments obtained by multiple restriction endonuclease digestions from small amounts of tissue. This technique offers much greater sensitivity than ethidium bromide staining. Moreover, it eliminates the expense and time to obtain highly purified mitochondrial DNA for the 32P-end-labeling procedure. It is also useful when the mtDNA is prepared from frozen tissue which has been a problem with the 32P-end-labeling technique. Because the cloned mitochondrial DNA has a high degree of cross-hybridization with the mitochondrial DNA of certain other fishes, it can be used to probe the mitochondrial DNA restriction patterns of a variety of fish species. However, its usefulness is restricted by the degree of relatedness to the species being cloned.


1993 ◽  
Vol 111 (2) ◽  
pp. 162-165 ◽  
Author(s):  
S. Kato ◽  
S. Ishikawa ◽  
S. Imakawa ◽  
S. Komori ◽  
T. Mikami ◽  
...  

1982 ◽  
Vol 2 (1) ◽  
pp. 30-41
Author(s):  
N A Oliver ◽  
D C Wallace

Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria.


1998 ◽  
Vol 76 (3) ◽  
pp. 440-447 ◽  
Author(s):  
X Zhu ◽  
K P Pruess ◽  
T O Powers

Mitochondrial DNA (mtDNA) was extracted from pooled field-collected samples representing six species of black flies (Cnephia dacotensis, Simulium bivittaum, S. johansenni, S. luggeri, S. piperi, S. vittatum) and compared by restriction fragment length polymorphism (RFLP) analysis. Morphospecies were molecularly distinct, with few shared restriction fragments. Eleven populations of S. vittatum were found that appeared to be homogeneous for a single mitochondrial haplotype. Ten other populations of S. vittatum showed extensive mitochondrial heterogeneity. In part, these samples contained mixtures of two cytologically recognized siblings: IIIL-1 and IS-7. About 70% of the mitochondrial genome of a population pure for sibling IIIL-1 was cloned as five HindIII fragments, which were used as hybridization probes to examine individual black flies. Thirteen mtDNA haplotypes involving permutations of 10 HindIII restriction sites were identified in individual black flies examined from 26 populations. DNA from 168 larvae cut with both EcoR1 and HindIII revealed five additional haplotypes. One HindIII haplotype was present in 84% of 390 larvae examined and predominated in every population examined from New York to California and in both the IIIL-1 and IS-7 siblings. Nebraska populations had individuals with nearly all known haplotypes. The most common haplotype was usually the only form present in warm, silty streams with organic enrichment. Rarer haplotypes were found in cool, spring-fed streams but without clear geographic or phylogenetic components.


2016 ◽  
Vol 62 ◽  
pp. 03004
Author(s):  
Yaodong Hu ◽  
Yun Zhu ◽  
Huizhong Pang ◽  
Dan Lan

Sign in / Sign up

Export Citation Format

Share Document