scholarly journals Frontoparietal, Cerebellum Network Codes for Accurate Intention Prediction in Altered Perceptual Conditions

Author(s):  
L Ceravolo ◽  
S Schaerlaeken ◽  
S Frühholz ◽  
D Glowinski ◽  
D Grandjean

Abstract Integrating and predicting the intentions and actions of others are critical components of social interactions, but the behavioral and neural bases of such mechanisms under altered perceptual conditions are poorly understood. In the present study, we recruited expert violinists and age-matched controls with no musical training and asked them to evaluate simplified dynamic stimuli of violinists playing in a piano or forte communicative intent while undergoing functional magnetic resonance imaging. We show that expertise is needed to successfully understand and evaluate communicative intentions in spatially and temporally altered visual representations of musical performance. Frontoparietal regions—such as the dorsolateral prefrontal cortex and the inferior parietal lobule and sulcus—and various subregions of the cerebellum—such as cerebellar lobules I-IV, V, VI, VIIb, VIIIa, X—are recruited in the process. Functional connectivity between these brain areas reveals widespread organization, particularly in the dorsolateral prefrontal cortex, inferior frontal gyrus, inferior parietal sulcus and in the cerebellum. This network may be essential to successfully assess communicative intent in ambiguous or complex visual scenes.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Seung-Lark Lim ◽  
J. Bradley C. Cherry ◽  
Ann M. Davis ◽  
S. N. Balakrishnan ◽  
Oh-Ryeong Ha ◽  
...  

Abstract As children grow, they gradually learn how to make decisions independently. However, decisions like choosing healthy but less-tasty foods can be challenging for children whose self-regulation and executive cognitive functions are still maturing. We propose a computational decision-making process in which children estimate their mother’s choices for them as well as their individual food preferences. By employing functional magnetic resonance imaging during real food choices, we find that the ventromedial prefrontal cortex (vmPFC) encodes children’s own preferences and the left dorsolateral prefrontal cortex (dlPFC) encodes the projected mom’s choices for them at the time of children’s choice. Also, the left dlPFC region shows an inhibitory functional connectivity with the vmPFC at the time of children’s own choice. Our study suggests that in part, children utilize their perceived caregiver’s choices when making choices for themselves, which may serve as an external regulator of decision-making, leading to optimal healthy decisions.


2015 ◽  
Vol 8 (2) ◽  
pp. 353
Author(s):  
D.F. Stramaccia ◽  
B. Penolazzi ◽  
G. Sartori ◽  
M. Braga ◽  
S. Mondini ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
pp. 44-56
Author(s):  
Torben Larsen

This paper discusses the development of a neuroeconomic model of decision-making (DM). The method used was a review of functional Magnetic Resonance Imaging of game trials on economic choice. Key centers in economic DM are Ventromedial Prefrontal Cortex, Dorsolateral Prefrontal Cortex, Frontopolar Cortex, Orbitofrontal Cortex, Anterior Cingulate Cortex, Amygdala and Ventral Tegmentum. The interaction of these centers determines individual risk-preference (NeM). The validity of NeM is consolidated by lesion-studies. NeM shows that relaxation exercises are complementary to physical fitness in the maintenance of mental health. Further, NeM explains the effect of “Early home-supported discharge” and how chess games support the learning of mathematics.


Sign in / Sign up

Export Citation Format

Share Document