scholarly journals The Role of the Aryl Hydrocarbon Receptor Pathway in Mediating Synergistic Developmental Toxicity of Polycyclic Aromatic Hydrocarbons to Zebrafish

2006 ◽  
Vol 92 (2) ◽  
pp. 526-536 ◽  
Author(s):  
Sonya M. Billiard ◽  
Alicia R. Timme-Laragy ◽  
Deena M. Wassenberg ◽  
Crystal Cockman ◽  
Richard T. Di Giulio
2017 ◽  
Vol 280 ◽  
pp. S85-S86
Author(s):  
Martina Hyzdalova ◽  
Jakub Pivnicka ◽  
Ondrej Zapletal ◽  
Gerardo Vazquez-Gomez ◽  
Jason Matthews ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Cornelia Dietrich

The aryl hydrocarbon receptor (AhR) is a transcription factor belonging to the basic helix-loop-helix/PER-ARNT-SIM family. It is activated by a variety of ligands, such as environmental contaminants like polycyclic aromatic hydrocarbons or dioxins, but also by naturally occurring compounds and endogenous ligands. Binding of the ligand leads to dimerization of the AhR with aryl hydrocarbon receptor nuclear translocator (ARNT) and transcriptional activation of several xenobiotic phase I and phase II metabolizing enzymes. It is generally accepted that the toxic responses of polycyclic aromatic hydrocarbons, dioxins, and structurally related compounds are mediated by activation of the AhR. A multitude of studies indicate that the AhR operates beyond xenobiotic metabolism and exerts pleiotropic functions. Increasing evidence points to a protective role of the AhR against carcinogenesis and oxidative stress. Herein, I will highlight data demonstrating a causal role of the AhR in the antioxidant response and present novel findings on potential AhR-mediated antioxidative mechanisms.


2020 ◽  
Vol 176 (1) ◽  
pp. 46-64 ◽  
Author(s):  
Michael A Garland ◽  
Mitra C Geier ◽  
Sean M Bugel ◽  
Prarthana Shankar ◽  
Cheryl L Dunham ◽  
...  

Abstract The aryl hydrocarbon receptor (AHR) mediates developmental toxicity of several xenobiotic classes including polycyclic aromatic hydrocarbons. Using embryonic zebrafish, we previously identified 4 polycyclic aromatic hydrocarbons that caused a novel phenotype among AHR ligands—growth of a lateral, duplicate caudal fin fold. The window of sensitivity to the most potent inducer of this phenotype, benzo[k]fluoranthene (BkF), was prior to 36 h postfertilization (hpf), although the phenotype was not manifest until 60 hpf. AHR dependency via Ahr2 was demonstrated using morpholino knockdown. Hepatocyte ablation demonstrated that hepatic metabolism of BkF was not required for the phenotype, nor was it responsible for the window of sensitivity. RNA sequencing performed on caudal trunk tissue from BkF-exposed animals collected at 48, 60, 72, and 96 hpf showed upregulation of genes associated with AHR activation, appendage development, and tissue patterning. Genes encoding fibroblast growth factor and bone morphogenic protein ligands, along with retinaldehyde dehydrogenase, were prominently upregulated. Gene Ontology term analysis revealed that upregulated genes were enriched for mesoderm development and fin regeneration, whereas downregulated genes were enriched for Wnt signaling and neuronal development. MetaCore (Clarivate Analytics) systems analysis of orthologous human genes predicted that R-SMADs, AP-1, and LEF1 regulated the expression of an enriched number of gene targets across all time points. Our results demonstrate a novel aspect of AHR activity with implications for developmental processes conserved across vertebrate species.


2019 ◽  
Vol 171 (2) ◽  
pp. 443-462 ◽  
Author(s):  
Nettie van Meteren ◽  
Dominique Lagadic-Gossmann ◽  
Martine Chevanne ◽  
Isabelle Gallais ◽  
Dimitri Gobart ◽  
...  

Abstract Extracellular vesicles (EVs) are membrane-enclosed nanostructures released by cells into the extracellular environment. As major actors of physiological intercellular communication, they have been shown to be pathogenic mediators of several liver diseases. Extracellular vesicles also appear to be potential actors of drug-induced liver injury but nothing is known concerning environmental pollutants. We aimed to study the impact of polycyclic aromatic hydrocarbons (PAHs), major contaminants, on hepatocyte-derived EV production, with a special focus on hepatocyte death. Three PAHs were selected, based on their presence in food and their affinity for the aryl hydrocarbon receptor (AhR): benzo[a]pyrene (BP), dibenzo[a,h]anthracene (DBA), and pyrene (PYR). Treatment of primary rat and WIF-B9 hepatocytes by all 3 PAHs increased the release of EVs, mainly comprised of exosomes, in parallel with modifying exosome protein marker expression and inducing apoptosis. Moreover, PAH treatment of rodents for 3 months also led to increased EV levels in plasma. The EV release involved CYP metabolism and the activation of the transcription factor, the AhR, for BP and DBA and another transcription factor, the constitutive androstane receptor, for PYR. Furthermore, all PAHs increased cholesterol levels in EVs but only BP and DBA were able to reduce the cholesterol content of total cell membranes. All cholesterol changes very likely participated in the increase in EV release and cell death. Finally, we studied changes in cell membrane fluidity caused by BP and DBA due to cholesterol depletion. Our data showed increased cell membrane fluidity, which contributed to hepatocyte EV release and cell death.


2018 ◽  
Vol 165 (2) ◽  
pp. 447-461 ◽  
Author(s):  
Martina Hýžd′alová ◽  
Jakub Pivnička ◽  
Ondřej Zapletal ◽  
Gerardo Vázquez-Gómez ◽  
Jason Matthews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document