scholarly journals DNA Damage and Perturbed Topoisomerase IIα as a Target of 1,4-Benzoquinone Toxicity in Murine Fetal Liver Cells

2019 ◽  
Vol 171 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Trent H Holmes ◽  
Louise M Winn

Abstract Benzene is a ubiquitous environmental pollutant. Recent studies have shown a link between the development of childhood leukemias and maternal benzene exposure, suggesting that these leukemias may be initiated in utero. Benzene crosses the placental barrier however the mechanisms behind in utero benzene toxicity have not been well elucidated. This study is the first to show that the benzene metabolite, benzoquinone (BQ), perturbs fetal topoisomerase IIα (Topo IIα), an enzyme essential for DNA repair. Using cultured murine CD-1 fetal liver cells, this study shows that Topo IIα activity decreases following 24 h of exposure to BQ (12.5 and 15.625 µM), with 12.5 µM confirmed to disrupt the c-kit+ Lin− Sca-1− Il7rα− population of cells in culture. Pretreatment with the antioxidant N-acetylcysteine did not prevent the inhibition of Topo IIα by BQ. An increase in Topo IIα-DNA covalent adducts was detected following 24-h exposure to BQ (12.5 and 50 µM). Interestingly, BQ (12.5 µM) exposure did not significantly increase levels of 4-hydroxynonenal (4-HNE), a marker of oxidative stress after 24 h. However, increased levels of the double-stranded DNA break marker γH2AX were detected following 24 h of BQ exposure, confirming that Topo IIα-induced breaks are increased in BQ-treated cells. This study shows that fetal Topo IIα is perturbed by BQ and suggests that this protein is a target of benzene and may be implicated with in utero benzene toxicity.

2005 ◽  
Vol 230 (11) ◽  
pp. 860-864 ◽  
Author(s):  
Mark A. Suckow ◽  
Amy Zollman ◽  
Ivo Cornelissen ◽  
Michelle Casad ◽  
Julie Roahrig ◽  
...  

2002 ◽  
Vol 37 (7) ◽  
pp. 1058-1064 ◽  
Author(s):  
Tippi C. MacKenzie ◽  
Aimen F. Shaaban ◽  
Antoneta Radu ◽  
Alan W. Flake

2009 ◽  
Vol 174 (3) ◽  
pp. 727-735 ◽  
Author(s):  
Barbara Tondelli ◽  
Harry C. Blair ◽  
Matteo Guerrini ◽  
Kenneth D. Patrene ◽  
Barbara Cassani ◽  
...  

2014 ◽  
Vol 2 (1) ◽  
pp. 10-13
Author(s):  
R. Salyutin ◽  
D. Dombrowski ◽  
M. Komarov ◽  
N. Sokolov ◽  
S. Palyanitsya ◽  
...  

In the group of patients (n = 21, mean age 54 ± 5.8 years) with chronic lower limb ischemia stage IIB who were non-liable for reconstructiverestoration surgery, we have established positive clinical effects of local transplantation of human fetal liver progenitor cells. Complex examination following 1, 3, 6 and 12 months after transplantation included duplex scanning of limb arteries, x-ray contrast arteriography and laser Doppler flowmetry as well as measuring pain-free walking and evaluating life quality based on individual questionnaire data.Owing to the transplant “Cryopreserved human fetal liver progenitor cells” the patients demonstrated stable increase of life quality index and pain-free walking as well as improvement of general health allowing assign them to the group of patients with lower ischemia stage,  quicker social rehabilitation and lesser risk of disabling surgery (р < 0.05). Also, there were observations of improved microcirculation in the ischemic extremities owing to activation of endothelium-independent mechanisms of vasodilatation, reduced myotonus and neurotonus of the pre-capillaries and improved endothelium-dependent influence on the microhaemodynamic and, hence, an increased reserve capillary blood flow (p < 0.05).Analysis of the obtained results indicates prospects and effectiveness of using fetal liver cells transplantation in the patients who are not liable for surgical reconstruction of the vascular bed.


Blood ◽  
2001 ◽  
Vol 97 (7) ◽  
pp. 1990-1998 ◽  
Author(s):  
Wolfgang E. Kaminski ◽  
Per Lindahl ◽  
Nancy L. Lin ◽  
Virginia C. Broudy ◽  
Jeffrey R. Crosby ◽  
...  

Abstract Platelet-derived growth factor (PDGF)-B and PDGF β-receptor (PDGFRβ) deficiency in mice is embryonic lethal and results in cardiovascular, renal, placental, and hematologic disorders. The hematologic disorders are described, and a correlation with hepatic hypocellularity is demonstrated. To explore possible causes, the colony-forming activity of fetal liver cells in vitro was assessed, and hematopoietic chimeras were demonstrated by the transplantation of mutant fetal liver cells into lethally irradiated recipients. It was found that mutant colony formation is equivalent to that of wild-type controls. Hematopoietic chimeras reconstituted with PDGF-B−/−, PDGFRβ−/−, or wild-type fetal liver cells show complete engraftment (greater than 98%) with donor granulocytes, monocytes, B cells, and T cells and display none of the cardiovascular or hematologic abnormalities seen in mutants. In mouse embryos, PDGF-B is expressed by vascular endothelial cells and megakaryocytes. After birth, expression is seen in macrophages and neurons. This study demonstrates that hematopoietic PDGF-B or PDGFRβ expression is not required for hematopoiesis or integrity of the cardiovascular system. It is argued that metabolic stress arising from mutant defects in the placenta, heart, or blood vessels may lead to impaired liver growth and decreased production of blood cells. The chimera models in this study will serve as valuable tools to test the role of PDGF in inflammatory and immune responses.


2007 ◽  
Vol 30 (11) ◽  
pp. 2091-2097 ◽  
Author(s):  
Masataka Maruyama ◽  
Tamihide Matsunaga ◽  
Eri Harada ◽  
Shigeru Ohmori

Sign in / Sign up

Export Citation Format

Share Document