scholarly journals Molecular epidemiology of Marek’s disease virus in central Pennsylvania, USA

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Andrew S Bell ◽  
David A Kennedy ◽  
Matthew J Jones ◽  
Christopher L Cairns ◽  
Utsav Pandey ◽  
...  

AbstractThe evolution of Marek’s disease virus (MDV, Gallid herpesvirus 2) has threatened the sustainability of poultry farming in the past and its continued evolution remains a concern. Genetic diversity is key to understanding evolution, yet little is known about the diversity of MDV in the poultry industry. Here, we investigate the diversity of MDV on 19 Pennsylvanian poultry farms over a 3-year period. Using eight polymorphic markers, we found that at least twelve MDV haplotypes were co-circulating within a radius of 40 km. MDV diversity showed no obvious spatial clustering nor any apparent clustering by bird line: all of the virus haplotypes identified on the commercial farms could be found within a single, commonly reared bird line. On some farms, a single virus haplotype dominated for an extended period of time, while on other farms the observed haplotypes changed over time. In some instances, multiple haplotypes were found simultaneously on a farm, and even within a single dust sample. On one farm, co-occurring haplotypes clustered into phylogenetically distinct clades, putatively assigned as high and low virulence pathotypes. Although the vast majority of our samples came from commercial poultry farms, we found the most haplotype diversity on a noncommercial backyard farm experiencing an outbreak of clinical Marek’s disease. Future work to explore the evolutionary potential of MDV might therefore direct efforts toward farms that harbor multiple virus haplotypes, including both backyard farms and farms experiencing clinical Marek’s disease.

2017 ◽  
Vol 61 (2) ◽  
pp. 153 ◽  
Author(s):  
David A. Kennedy ◽  
Christopher Cairns ◽  
Matthew J. Jones ◽  
Andrew S. Bell, ◽  
Rahel M. Salathé ◽  
...  

2016 ◽  
Author(s):  
David A. Kennedy ◽  
Christopher Cairns ◽  
Matthew J. Jones ◽  
Andrew S. Bell ◽  
Rahel M. Salathé ◽  
...  

AbstractMarek’s disease virus is a herpesvirus of chickens that costs the worldwide poultry industry over 1 billion USD annually. Two generations of Marek’s disease vaccines have shown reduced efficacy over the last half century due to evolution of the virus. Understanding where the virus is present may give insight into whether continued reductions in efficacy are likely. We conducted a three-year surveillance study to assess the prevalence of Marek’s disease virus on commercial poultry farms, determine the effect of various factors on virus prevalence, and document virus dynamics in broiler chicken houses over short (weeks) and long (years) timescales. We extracted DNA from dust samples collected from commercial chicken and egg production facilities in Pennsylvania, USA. Quantitative polymerase chain reaction (qPCR) was used to assess wild-type virus detectability and concentration. Using data from 1018 dust samples with Bayesian generalized linear mixed effects models, we determined the factors that correlated with virus prevalence across farms. Maximum likelihood and autocorrelation function estimation on 3727 additional dust samples were used to document and characterize virus concentrations within houses over time. Overall, wild-type virus was detectable at least once on 36 of 104 farms at rates that varied substantially between farms. Virus was detected in 1 of 3 broiler-breeder operations (companies), 4 of 5 broiler operations, and 3 of 5 egg layer operations. Marek’s disease virus detectability differed by production type, bird age, day of the year, operation (company), farm, house, flock, and sample. Operation (company) was the most important factor, accounting for between 12% and 63.4% of the variation in virus detectability. Within individual houses, virus concentration often dropped below detectable levels and reemerged later. These data characterize Marek’s disease virus dynamics, which are potentially important to the evolution of the virus.


2021 ◽  
pp. 1342-1353
Author(s):  
Nahed Yehia ◽  
Hemat S. El-Sayed ◽  
Sabry E. Omar ◽  
Ahmed Erfan ◽  
Fatma Amer

Background and Aim: The Marek's disease virus (MDV) is a neoplastic disease causing serious economic losses in poultry production. This study aimed to investigate MDV occurrence in poultry flocks in the Lower Egypt during the 2020 breakout and genetically characterized Meq, gL, and ICP4 genes in field strains of MDV. Materials and Methods: Forty samples were collected from different breeds from eight Egyptian governorates in 2020. All flocks had received a bivalent vaccine (herpesvirus of turkey FC-126 + Rispens CVI988). However, weight loss, emaciation, reduced egg production, paralysis, and rough/raised feather follicles occurred. Samples were collected from feather follicles, liver, spleen, and nerve tissue for diagnosis by polymerase chain reaction. MDV genetic characterization was then performed by sequencing the Meq, gL, and ICP4 genes of five positive samples representing different governorates and breeds. Results: A total of 28 samples were positive for MDV field strains, while two were related to MDV vaccinal strains. All samples tested negative for ALV (A, B, C, D, and J) and REV. Phylogenetic analysis of the Meq gene of sequenced samples revealed that all MDVs were related to the highly virulent European viruses (Gallid herpesvirus 2 ATE and PC12/30) with high amino acid (A.A.) identity 99.2-100%. Alternatively, there was low A.A. identity with the vaccine strains CVI988 and 3004 (up to 82.5%). These results indicate that further investigation of the efficacy of current Egyptian vaccines is required. The Egyptian strains also harbor a specific mutation, allowing clustering into two subgroups (A and B). By mutation analysis of the Meq gene, the Egyptian viruses in our study had R101K, P217A, and E263D mutations present in all Egyptian viruses. Furthermore, R176A and T180A mutations specific to our strains contributed to the high virulence of highly virulent strains. There were no mutations of the gL or ICP4 genes. Conclusion: Further studies should evaluate the protection contributed by current vaccines used in Egypt.


Virology ◽  
2018 ◽  
Vol 522 ◽  
pp. 56-64 ◽  
Author(s):  
Adrianna M.S. Laursen ◽  
Raveendra R. Kulkarni ◽  
Khaled Taha-Abdelaziz ◽  
Brandon L. Plattner ◽  
Leah R. Read ◽  
...  

2021 ◽  
Author(s):  
Huimin Li ◽  
Zengxu Ge ◽  
Qiong Luo ◽  
Qiang Fu ◽  
Ruiai Chen

Abstract Marek’s disease virus (MDV) is an important oncogenic poultry pathogen that can generally be controlled by vaccination. However, MDV still occasionally occurs on vaccinated farms owing to possible genetic variation among MDV strains as well as management-related issues. In this study, a novel MDV strain (designated LZ1309) was isolated from a poultry flock that had been previously vaccinated using the HVT plus CVI988 vaccine strains. Animal experiments showed that LZ1309 infection led higher morbidity (100%) and mortality (90%). Moreover, existing vaccines only provided partial protection against LZ1309, which protection indexes of HVT, CVI988, and HVT plus CVI988 were 68.4%, 85%, and 90%, respectively. In conclusion, we have shown that the more virulent of Marek’s disease virus existed in vaccinated with HVT plus CVI988 in poultry farms in China. And the emergence of LZ1309 poses a new potential threat to poultry farms. In future studies, the development of new treatment strategies should be of high priority.


2017 ◽  
Vol 73 (1) ◽  
pp. 15-22
Author(s):  
Agata Józefiak ◽  
Magdalena Kufel ◽  
Jarosław Wilczyński

Marek's disease is a viral disease, a type of poultry cancer. It is caused by MDV serotype 1 (Marek's disease virus, MDV) viruses, also referred to as Gallid herpesvirus 2 belonging to the family Herpesviridae. The complete, fully infectious virus particles are present in the feathers and the nodules months can survive in the environment for many months. The use of isothermal amplification methods of genetic material (Loop - Mediated Isothermal Amplification, LAMP) virus MDV enables rapid and precise identification of the virus in difficult diagnostic material, including dust. By optimizing the reaction conditions and using at least two pairs of primers which bind to specific sites in the genome of the virus, this technique has high sensitivity and specificity. The technique makes it possible to detect of single copies of the meq oncogene – a unique region of DNA of the first type of virus MDV.


2019 ◽  
Vol 20 (2) ◽  
pp. 6-11
Author(s):  
Aly El-Kenawy ◽  
Mohamed El-Tholoth ◽  
Emad A

In the present study, a total of 16 samples including feather follicle epithelium, ovary, spleen and kidney (4 samples for each organ) were collected from diseased chicken flocks suspected to be infected with Marek’s disease virus (MDV) at Dakahlia Governorate, Egypt during the period from October 2016 to October 2017. Each sample was pooled randomly from three to five birds (90 to 360 days old). The isolation of the suspected virus from the collected samples was carried out via chorioallantoic membranes (CAMs) of 12 days old embryonated chicken eggs (ECEs). Three egg passages were carried out for each sample. Hyperimmune serum was prepared against standard MDV. MDV in both field and egg passaged samples (after 3rd passage) was identified by agar gel precipitation test (AGPT) and indirect fluorescence antibody test (IFAT). Molecular identification of virus was carried out by conventional polymerase chain reaction (PCR) and real- time PCR in four selected samples. The results revealed that 14 samples (87.5%) including 4 (100%) samples from feather follicle epithelium, ovary and kidney and 2 (50%) samples from spleen, showed positive results in virus isolation after 3rd passage. The positive results percentage by AGPT for field samples were 50% (8 out of 16 samples), while after the 3rd passage in ECEs were 37.5% (6 out of 16 samples) and the positive results percentage by IFAT for field samples were 62.5% (10 out of 16 samples), while after the 3rd passage in ECEs were 81.25 % (13 out of 16 samples). Viral nucleic acid was detected in all selected samples by conventional and real- time PCR. The results indicate that feather follicle epithelium is the best organ for MDV detection. IFAT is superior over AGPT in virus detection. Conventional and real - time PCR could be efficiently used for molecular detection of the virus.


Sign in / Sign up

Export Citation Format

Share Document