scholarly journals Cytoplasmic and Nuclear Localizations Are Important for the Hypersensitive Response Conferred by Maize Autoactive Rp1-D21 Protein

2015 ◽  
Vol 28 (9) ◽  
pp. 1023-1031 ◽  
Author(s):  
Guan-Feng Wang ◽  
Peter J. Balint-Kurti

Disease resistance (R) genes have been isolated from many plant species. Most encode nucleotide binding leucine-rich repeat (NLR) proteins that trigger a rapid localized programmed cell death called the hypersensitive response (HR) upon pathogen recognition. Despite their structural similarities, different NLR are distributed in a range of subcellular locations, and analogous domains play diverse functional roles. The autoactive maize NLR gene Rp1-D21 derives from an intragenic recombination between two NLR genes, Rp1-D and Rp1-dp2, and confers a HR independent of the presence of a pathogen. Rp1-D21 and its N-terminal coiled coil (CC) domain (CCD21) confer autoactive HR when transiently expressed in Nicotiana benthamiana. Rp1-D21 was predominantly localized in cytoplasm with a small amount in the nucleus, while CCD21 was localized in both nucleus and cytoplasm. Targeting of Rp1-D21 or CCD21 predominantly to either the nucleus or the cytoplasm abolished HR-inducing activity. Coexpression of Rp1-D21 or CCD21 constructs confined, respectively, to the nucleus and cytoplasm did not rescue full activity, suggesting nucleocytoplasmic movement was important for HR induction. This work emphasizes the diverse structural and subcellular localization requirements for activity found among plant NLR R genes.

2004 ◽  
Vol 17 (12) ◽  
pp. 1328-1336 ◽  
Author(s):  
Li Kang ◽  
Xiaoyan Tang ◽  
Kirankumar S. Mysore

Many gram-negative bacterial pathogens rely on a type III secretion system to deliver a number of effector proteins into the host cell. Though a number of these effectors have been shown to contribute to bacterial pathogenicity, their functions remain elusive. Here we report that AvrPto, an effector known for its ability to interact with Pto and induce Pto-mediated disease resistance, inhibited the hypersensitive response (HR) induced by nonhost pathogen interactions. Pseudomonas syringae pv. tomato T1 causes an HR-like cell death on Nicotiana benthamiana. This rapid cell death was delayed significantly in plants inoculated with P. syringae pv. tomato expressing avrPto. In addition, P. syringae pv. tabaci expressing avrPto suppressed nonhost HR on tomato prf3 and ptoS lines. Transient expression of avrPto in both N. benthamiana and tomato prf3 plants also was able to suppress nonhost HR. Interestingly, AvrPto failed to suppress cell death caused by other elicitors and nonhost pathogens. AvrPto also failed to suppress cell death caused by certain gene-for-gene disease resistance interactions. Experiments with avrPto mutants revealed several residues important for the suppression effects. AvrPto mutants G2A, G99V, P146L, and a 12-amino-acid C-terminal deletion mutant partially lost the suppression ability, whereas S94P and I96T enhanced suppression of cell death in N. benthamiana. These results, together with other discoveries, demonstrated that suppression of host-programmed cell death may serve as one of the strategies bacterial pathoens use for successful invasion.


2019 ◽  
Vol 32 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Takaki Maekawa ◽  
Barbara Kracher ◽  
Isabel M. L. Saur ◽  
Makoto Yoshikawa-Maekawa ◽  
Ronny Kellner ◽  
...  

The barley disease resistance (R) gene locus mildew locus A (Mla) provides isolate-specific resistance against the powdery mildew fungus Blumeria graminis hordei and has been introgressed into modern cultivars from diverse germplasms, including the wild relative Hordeum spontaneum. Known Mla disease resistance specificities to B. graminis hordei appear to encode allelic variants of the R gene homolog 1 (RGH1) family of nucleotide-binding domain and leucine-rich repeat (NLR) proteins. Here, we sequenced and assembled the transcriptomes of 50 H. spontaneum accessions representing nine populations distributed throughout the Fertile Crescent. The assembled Mla transcripts exhibited rich sequence diversity, linked neither to geographic origin nor population structure, and could be grouped into two similar-sized subfamilies based on two major N-terminal coiled-coil (CC) signaling domains that are both capable of eliciting cell death. The presence of positively selected sites located mainly in the C-terminal leucine-rich repeats of both MLA subfamilies, together with the fact that both CC signaling domains mediate cell death, implies that the two subfamilies are actively maintained in the population. Unexpectedly, known MLA receptor variants that confer B. graminis hordei resistance belong exclusively to one subfamily. Thus, signaling domain divergence, potentially as adaptation to distinct pathogen populations, is an evolutionary signature of functional diversification of an immune receptor. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .


2016 ◽  
Vol 171 (1) ◽  
pp. 658-674 ◽  
Author(s):  
Louis-Philippe Hamel ◽  
Ken-Taro Sekine ◽  
Thérèse Wallon ◽  
Yuji Sugiwaka ◽  
Kappei Kobayashi ◽  
...  

2021 ◽  
Author(s):  
Jennifer Prautsch ◽  
Jessica L. Erickson ◽  
Sedef Özyürek ◽  
Rahel Gormannns ◽  
Lars Franke ◽  
...  

In Nicotiana benthamiana, expression of the Xanthomonas effector XopQ triggers ROQ1-dependent ETI responses and in parallel accumulation of plastids around the nucleus and the formation of stromules. Both processes were proposed to contribute to ETI-related hypersensitive cell death and thereby to plant immunity. Whether these reactions are directly connected to ETI signaling events has not been tested. Here we utilized transient expression experiments to determine whether XopQ-mediated plastid reactions are a result of XopQ perception by ROQ1 or a consequence of XopQ virulence activity. We find that N. benthamiana mutants lacking ROQ1, both RNLs (NRG1 and ADR1) or EDS1, fail to elicit XopQ-dependent host cell death and stromule formation. Mutants lacking only NRG1 lost XopQ-dependent cell death but retained some stromule induction that was abolished in the RNL double mutant. This analysis aligns XopQ-induced stromules with the ETI signaling cascade but not to host programmed cell death. Furthermore, data reveal that XopQ-triggered plastid clustering is not strictly linked to stromule formation during ETI. Our data suggest that stromule formation, in contrast to chloroplast peri-nuclear dynamics, is an integral part of the N. benthamiana ETI response and that both RNL sub-types play a role in this ETI response.


2021 ◽  
Author(s):  
Philipp E Bayer ◽  
Haifei Hu ◽  
Jakob Petereit ◽  
Rajeev K Varshney ◽  
Babu Valliyodan ◽  
...  

The availability of increasing quantities of crop pangenome data permits the detailed association of gene content with agronomic traits. Here, we investigate disease resistance gene content of diverse soybean cultivars and report a significant negative correlation between the number of NLR resistance (R) genes and yield. We find no association between R-genes with seed weight, oil or protein content, and we find no correlation between yield and the number of RLK, RLP genes, or the total number of genes. These results suggest that recent yield improvement in soybean may be partially associated with the selective loss of NLR genes. Three quarters of soybean NLR genes do not show presence/absence variation, limiting the ability to select for their absence, and so the deletion or disabling of select NLR genes may support future yield improvement.


2020 ◽  
Vol 33 (2) ◽  
pp. 308-319 ◽  
Author(s):  
Stephen Bolus ◽  
Eduard Akhunov ◽  
Gitta Coaker ◽  
Jorge Dubcovsky

Nucleotide-binding leucine-rich repeat receptors (NLRs) are the most abundant type of immune receptors in plants and can trigger a rapid cell-death (hypersensitive) response upon sensing pathogens. We previously cloned the wheat NLR Sr35, which encodes a coiled-coil (CC) NLR that confers resistance to the virulent wheat stem rust race Ug99. Here, we investigated Sr35 signaling after Agrobacterium-mediated transient expression in Nicotiana benthamiana. Expression of Sr35 in N. benthamiana leaves triggered a mild cell-death response, which is enhanced in the autoactive mutant Sr35 D503V. The N-terminal tagging of Sr35 with green fluorescent protein (GFP) blocked the induction of cell death, whereas a C-terminal GFP tag did not. No domain truncations of Sr35 generated cell-death responses as strong as the wild type, but a truncation including the NB-ARC (nucleotide binding adaptor) shared by APAF-1, R proteins, and CED-4 domains in combination with the D503V autoactive mutation triggered cell death. In addition, coexpression of Sr35 with the matching pathogen effector protein AvrSr35 resulted in robust cell death and electrolyte leakage levels that were similar to autoactive Sr35 and significantly higher than Sr35 alone. Coexpression of Sr35-CC-NB-ARC and AvrSr35 did not induce cell death, confirming the importance of the leucine-rich repeat (LRR) domain for AvrSr35 recognition. These findings were confirmed through Agrobacterium-mediated transient expression in barley. Taken together, these results implicate the CC-NB-ARC domains of Sr35 in inducing cell death and the LRR domain in AvrSr35 recognition. [Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .


Sign in / Sign up

Export Citation Format

Share Document