garlic virus
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 1)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 224
Author(s):  
Malyaj Prajapati ◽  
Aakansha Manav ◽  
Jitender Singh ◽  
Pankaj Kumar ◽  
Amit Kumar ◽  
...  

Garlic (Allium sativum L.) plants exhibiting mosaics, deformation, and yellow stripes symptoms were identified in Meerut City, Uttar Pradesh, India. To investigate the viruses in the garlic samples, the method of high-throughput sequencing (HTS) was used. Complete genome of the garlic virus E (GarV-E) isolate (NCBI accession No. MW925710) was retrieved. The virus complete genome comprises 8450 nucleotides (nts), excluding the poly (A) tail at the 3′ terminus, with 5′ and 3′ untranslated regions (UTRs) of 99 and 384 nts, respectively, and ORFs encoding replicase with a conserved motif for RNA-dependent RNA polymerase (RdRP), TGB1, TGB2, TGB3, serine-rich protein, coat protein, and nucleic acid binding protein (NABP). The sequence homology shared 83.49–90.40% and 87.48–92.87% with those of GarV-E isolates available in NCBI at the nucleotide and amino acid levels, respectively. Phylogenetic analysis showed a close relationship of this isolate from India (MW925710) with GarV-E isolate YH (AJ292230) from Zhejiang, China. The presence of GarV-E was also confirmed by RT-PCR. The present study is the first report of GarV-E in garlic cultivar Yamuna Safed-3 grown in northern India. However, further studies are needed to confirm its role in symptom development, nationwide distribution, genetic diversity, and potential yield loss to the garlic in India.


Plant Disease ◽  
2021 ◽  
Author(s):  
Chadha Ayed ◽  
Imen Hamdi ◽  
Asma Najar ◽  
Armelle Marais ◽  
Chantal Faure ◽  
...  

Mite-borne viruses belonging to the genus Allexivirus (family Alphaflexiviridae) commonly occur on garlic in many parts of the world. There are usually asymptomatic and cause small damage to the plants, but often occur in mixed infection with potyviruses and carlaviruses, with synergistic effects reducing crop quality and leading to higher losses (Taglienti et al. 2017). Their occurrence on Tunisian garlic crops was studied here in the same garlic germplasm collection mentioned in a previous first report (Ayed et al. 2019). Leaf samples from a total of 66 garlic accessions were tested by DAS-ELISA using specific antibodies (DSMZ, Germany) against garlic virus A (GarV-A), garlic virus B (GarV-B) and garlic virus C (GarV-C). These serological tests showed individual virus incidence of respectively 56.4%, 67.7% and 10%. Our findings corroborate with the results of Chodorska et al (2012). In order to confirm the presence of these viruses, RT-PCR assays were performed using total RNAs extracted using two silica-capture extraction procedures according to Foissac et al (2005) and specific primers targeting the coat protein genes of the various viruses. These primers, designed for the present study are (GarV-A-F: 5' YCTYTTCTCHYTDGCHTGGACYTG 3' and GarV-A-R: 5' RCCYTTCCTAGACCARTTRGCRGG 3' for GarV-A; GarV-B-F: 5' TGGGCYTGYTACCACAAYGGATC 3' and GarV-B-R 5' TCTGCGCGVGTGGADACCATRTT 3' for GarV-B; GarV-C-F: 5' ARGAYCTYTTYTCMCTYGCRTGGGC 3' and GarV-C-R: 5' GGAGGYTCRTGAATYTGTTGTTG 3' for GarV-C). The viruses were detected by a two-step RT-PCR as described by Marais et al (2015). PCRs consisted of one cycle at 95 °C for 5 min; followed by 40 cycles of denaturation at 95 °C for 45 s, annealing at 45 °C for 45 s, and elongation at 72 °C for 45s; and a final extension step at 72 °C for 10 min. Products of the expected size (214 bp for GarV-A, 363 bp for GarV-B and 439 bp for GarV-C) were amplified from 58 (88%), 47 (71%) and 56 (85%) accessions, respectively. Forty three samples (65%) were co-infected by the three viruses. Higher numbers of positives revealed by RT-PCR especially in the case of GarV-C may reflect the higher sensitivity and efficiency of this technique compared to ELISA. Direct sequencing of selected amplicons of the expected size obtained for GarV-A, -B, and -C Tunisian isolates was performed and the sequences submitted to GenBank, validating the specificity of the three RT-PCR assays. The two sequenced GarV-A isolates (MK599147 and MN995836) shared 98% nucleotide (nt) sequence identity with each other, and 93-94% identity with the closest isolate in GenBank, the “G118” isolate from China (MN059320). The three sequenced GarV-B isolates (MN995829 to MN995831) shared 88-98% nt identity with each other. For “GarV-B 18.1” (MN995830) and “GarV-B 36.2” (MN995831) the closest isolate was “1109.1” (JX682828) from Spain (92-93% nt identity). For “GarVB 17.2” (MN995829), the closest isolate was “B-Sp-3” (LC97167) from Spain (90% nt identity). The sequenced GarV-C isolate (MN995834) showed the highest sequence nt identity (93%) with the “GarV-9” isolate (HQ724848) from Spain. To our knowledge this is the first report of the presence of GarV-A, -B and -C in Tunisia. The presence of these allexiviruses may pose a threat to the preservation of the Tunisian garlic germplasm and, more broadly, to garlic production in Tunisia. For this reason, the scrupulous identification of viruses occurring in garlic plants will help to use the appropriate strategy to decrease viral incidence in garlic growing area.


2021 ◽  
Vol 22 (13) ◽  
pp. 6791
Author(s):  
Yeonhwa Jo ◽  
Chang-Gi Back ◽  
Kook-Hyung Kim ◽  
Hyosub Chu ◽  
Jeong Hun Lee ◽  
...  

Garlic (Allium sativum) is a perennial bulbous plant. Due to its clonal propagation, various diseases threaten the yield and quality of garlic. In this study, we conducted in silico analysis to identify microorganisms, bacteria, fungi, and viruses in six different tissues using garlic RNA-sequencing data. The number of identified microbial species was the highest in inflorescences, followed by flowers and bulb cloves. With the Kraken2 tool, 57% of identified microbial reads were assigned to bacteria and 41% were assigned to viruses. Fungi only made up 1% of microbial reads. At the species level, Streptomyces lividans was the most dominant bacteria while Fusarium pseudograminearum was the most abundant fungi. Several allexiviruses were identified. Of them, the most abundant virus was garlic virus C followed by shallot virus X. We obtained a total of 14 viral genome sequences for four allexiviruses. As we expected, the microbial community varied depending on the tissue types, although there was a dominant microorganism in each tissue. In addition, we found that Kraken2 was a very powerful and efficient tool for the bacteria using RNA-sequencing data with some limitations for virome study.


2020 ◽  
Author(s):  
Abel Debebe Mitiku ◽  
Dawit Tesfaye Degefu ◽  
Adane Abraham ◽  
Desta Mejan ◽  
Pauline Asami ◽  
...  

AbstractGarlic is one of the most crucial Allium vegetables used as seasoning of foods. It has a lot of benefits from the medicinal and nutritional point of view; however, its production is highly constrained by both biotic and abiotic challenges. Among these, viral infections are the most prevalent factors affecting crop productivity around the globe. This experiment was conducted on eleven selected garlic accessions and three improved varieties collected from different garlic growing agro-climatic regions of Ethiopia. This study aimed to identify and characterize the isolated garlic virus using the coat protein (CP) gene and further determine their phylogenetic relatedness. RNA was extracted from fresh young leaves, thirteen days old seedlings, which showed yellowing, mosaic, and stunting symptoms. Pairwise molecular diversity for CP nucleotide and amino acid sequences were calculated using MEGA5. Maximum Likelihood tree of CP nucleotide sequence data of Allexivirus and Potyvirus were conducted using PhyML, while a neighbor-joining tree was constructed for the amino acid sequence data using MEGA5. From the result, five garlic viruses were identified viz. Garlic virus C (78.6 %), Garlic virus D (64.3 %), Garlic virus X (78.6 %), Onion yellow dwarf virus (OYDV) (100%), and Leek yellow stripe virus (LYSV) (78.6 %). The study revealed the presence of complex mixtures of viruses with 42.9 % of the samples had co-infected with a species complex of Garlic virus C, Garlic virus D, Garlic virus X, OYDV, and LYSV. Pairwise comparisons of the isolated Potyviruses and Allexiviruses species revealed high identity with that of the known members of their respected species. As an exception, less within species identity was observed among Garlic virus C isolates as compared with that of the known members of the species. Finally, our results highlighted the need for stepping up a working framework to establish virus-free garlic planting material exchange in the country which could result in the reduction of viral gene flow across the country.Author SummaryGarlic viruses are the most devastating disease since garlic is the most vulnerable crop due to their vegetative nature of propagation. Currently, the garlic viruses are the aforementioned production constraint in Ethiopia. However, so far very little is known on the identification, diversity, and dissemination of garlic infecting viruses in the country. Here we explore the prevalence, genetic diversity, and the presence of mixed infection of garlic viruses in Ethiopia using next generation sequencing platform. Analysis of nucleotide and amino acid sequences of coat protein genes from infected samples revealed the association of three species from Allexivirus and two species from Potyvirus in a complex mixture. Ultimately the article concludes there is high time to set up a working framework to establish garlic free planting material exchange platform which could result in a reduction of viral gene flow across the country.


Plant Disease ◽  
2020 ◽  
Author(s):  
Praveen Baliram Roylawar ◽  
Kiran S Khandagale ◽  
Pragati Randive ◽  
Gorakshnath E. Atre ◽  
Suresh Janardhan Gawande ◽  
...  

Garlic (Allium sativum L.) is an economically important spice and vegetable crop grown throughout the world. Garlic viral disease complex caused by multiple virus infections is an important constraint in exploiting the potential yield of garlic. Among these viral pathogens, allexivirus (family Alphaflexiviridae) is the genus of viruses known for their degenerative effect on garlic yield. Their coexistence with other viruses, particularly potyviruses, has an adverse effect on garlic yield and quality (Perotto et al. 2010). During Sept 2018, while screening garlic germplasm accessions for the presence of allexiviruses, symptoms like foliar mosaic and curling were observed on accession G-204, planted at an experimental plot of ICAR-DOGR, Pune, India. A total of five samples comprised of five randomly selected G-204 garlic plants were collected from the experimental plot. Each sample contained leaves from the top, middle, and bottom portion of the individual garlic plants. These samples were subjected to RNA extraction using the RNeasy Plant Mini Kit (Qiagen, Germany) followed by reverse transcription (RT) using the Transcriptor cDNA synthesis kit (Roche Diagnostics, GmbH, Germany). The extracted RNA was then tested for allexiviruses such as garlic virus A (GarV-A), garlic virus B (GarV-B), garlic virus C (GarV-C), garlic virus D (GarV-D), and garlic virus X (GarV-X) by polymerase chain reaction (PCR) (Gawande et al. 2015; Roylawar et al. 2019; Baranwal et al. 2011; Gieck et al. 2009). Leaf samples tested through RT-PCR were found positive for garlic viruses GarV-A, GarV-B, GarV-C, GarV-D, and GarV-X. Allexiviruses other than GarV-B had been previously reported in India and hence further tests were conducted to confirm GarV-B infection. RT-PCR using primers, CF 5’- ATGGGAGACAGGTCGCAA-3’ and CR5’- CTAAAATGTAAGCATGAGCGGT-3’ designed specific to the coat protein yielded a 735-bp amplicon from all five G-204 plants. The amplified product was purified using QIAquick PCR Purification Kit (Qiagen, Germany) and cloned in pJET1.2 vector (Thermo Scientific, Lithuania). Two clones containing the CP gene were bidirectionally sequenced, and a consensus sequence was submitted to GenBank (MN650206). BLASTn results indicated that this consensus sequence showed 97.96% nucleotide (KP657919.1) and 100% amino acid sequence (AKN19940.1) identity with the CP sequence of GarV-B isolate from Poland. The presence of GarV-B was confirmed by enzyme-linked immunosorbent assay (ELISA) using a double-antibody sandwich ELISA kit (Arsh Biotech, Delhi, India) as per the manufacturer’s protocol. An absorbance of reaction was read using a microplate reader at 405 nm. The mean OD values of negative and positive controls were 0.034 and 0.373, respectively. The OD values of five samples tested ranged from 0.210 to 0.296 indicating a positive reaction for GarV-B. To assess the presence of GarV-B in the available genetic stock, we tested 30 garlic germplasm accessions for GarV-B using RT-PCR. Out of these, 17 accessions were found positive for GarV-B. GarV-B has been reported from many countries (Gieck et al. 2009). This is the first report of GarV-B from India. Globally, allexiviruses are known for their adverse impact on garlic production (Oliveira et al. 2014). GarV-B together with other viruses can be a potential threat to garlic production in India. Further, detailed evaluations are needed to study the impact of GarV-B on garlic production in India.


2020 ◽  
Vol 102 (4) ◽  
pp. 1347-1347
Author(s):  
Shahana Majumder ◽  
Sneha Singh ◽  
Jyoti Singh
Keyword(s):  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Sari Nurulita ◽  
Andrew D. W. Geering ◽  
Kathleen S. Crew ◽  
Stephen Harper ◽  
John E. Thomas
Keyword(s):  

2020 ◽  
Vol 157 (1) ◽  
pp. 215-222
Author(s):  
Elżbieta Dąbrowska ◽  
Mariusz Lewandowski ◽  
Sylwia Koczkodaj ◽  
Elżbieta Paduch-Cichal
Keyword(s):  
Virus C ◽  

Genomics ◽  
2020 ◽  
Vol 112 (2) ◽  
pp. 1861-1865
Author(s):  
Jitender Singh ◽  
Manoj Kumar Singh ◽  
Koushlesh Ranjan ◽  
Amit Kumar ◽  
Pankaj Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document