scholarly journals Characterization of Cichopeptins, New Phytotoxic Cyclic Lipodepsipeptides Produced by Pseudomonas cichorii SF1-54 and Their Role in Bacterial Midrib Rot Disease of Lettuce

2015 ◽  
Vol 28 (9) ◽  
pp. 1009-1022 ◽  
Author(s):  
Chien-Jui Huang ◽  
Ellen Pauwelyn ◽  
Marc Ongena ◽  
Delphine Debois ◽  
Valerie Leclère ◽  
...  

The lettuce midrib rot pathogen Pseudomonas cichorii SF1-54 produces seven bioactive compounds with biosurfactant properties. Two compounds exhibited necrosis-inducing activity on chicory leaves. The structure of the two phytotoxic compounds, named cichopeptin A and B, was tentatively characterized. They are related cyclic lipopeptides composed of an unsaturated C12-fatty acid chain linked to the N-terminus of a 22–amino acid peptide moiety. Cichopeptin B differs from cichopeptin A only in the last C-terminal amino acid residue, which is probably Val instead of Leu/Ile. Based on peptide sequence similarity, cichopeptins are new cyclic lipopeptides related to corpeptin, produced by the tomato pathogen Pseudomonas corrugata. Production of cichopeptin is stimulated by glycine betaine but not by choline, an upstream precursor of glycine betaine. Furthermore, a gene cluster encoding cichopeptin synthethases, cipABCDEF, is responsible for cichopeptin biosynthesis. A cipA-deletion mutant exhibited significantly less virulence and rotten midribs than the parental strain upon spray inoculation on lettuce. However, the parental and mutant strains multiplied in lettuce leaves at a similar rate. These results demonstrate that cichopeptins contribute to virulence of P. cichorii SF1-54 on lettuce.

Author(s):  
Alexia Vautrin-Glabik ◽  
Jérôme Devy ◽  
Camille Bour ◽  
Stéphanie Baud ◽  
Laurence Choulier ◽  
...  

2009 ◽  
Vol 84 (1) ◽  
pp. 543-557 ◽  
Author(s):  
Vandana Sekhar ◽  
Shawna C. Reed ◽  
Alison A. McBride

ABSTRACT During persistent papillomavirus infection, the viral E2 protein tethers the viral genome to the host cell chromosomes, ensuring maintenance and segregation of the viral genome during cell division. However, E2 proteins from different papillomaviruses interact with distinct chromosomal regions and targets. The tethering mechanism has been best characterized for bovine papillomavirus type 1 (BPV1), where the E2 protein tethers the viral genome to mitotic chromosomes in complex with the cellular bromodomain protein, Brd4. In contrast, the betapapillomavirus human papillomavirus type 8 (HPV8) E2 protein binds to the repeated ribosomal DNA genes that are found on the short arm of human acrocentric chromosomes. In this study, we show that a short 16-amino-acid peptide from the hinge region and the C-terminal DNA binding domain of HPV8 E2 are necessary and sufficient for interaction with mitotic chromosomes. This 16-amino-acid region contains an RXXS motif that is highly conserved among betapapillomaviruses, and both arginine 250 and serine 253 residues within this motif are required for mitotic chromosome binding. The HPV8 E2 proteins are highly phosphorylated, and serine 253 is a site of phosphorylation. The HPV8 E2 chromosome binding sequence also has sequence similarity with chromosome binding regions in the gammaherpesvirus EBNA and LANA tethering proteins.


1996 ◽  
Vol 314 (3) ◽  
pp. 817-825 ◽  
Author(s):  
Robert HAAS ◽  
Brent C. JACKSON ◽  
Bruce REINHOLD ◽  
John D. FOSTER ◽  
Terrone L. ROSENBERRY

Purified bovine erythrocyte acetylcholinesterase (AChE) was radiomethylated on its amine groups and incubated with bacterial phosphatidylinositol-specific phospholipase C to remove the lipid portion of the AChE glycoinositol phospholipid (GPI) anchor, and a C-terminal tryptic fragment that contained the residual GPI glycan was isolated by HPLC. Analysis by electrospray-ionization mass spectrometry revealed a parent ion of m/z 3798. The fragmentation patterns produced by collision-induced dissociation mass spectrometry of the +4 and +5 states of the parent ion indicated a 23-amino acid peptide in amide linkage to ethanolamine-PO4-Hex-Hex-Hex(PO4-ethanolamine) (HexNAc)-HexN(Me)2-inositol phosphate. The glycan structure is completely consistent with that obtained previously for the GPI anchor of human erythrocyte AChE except for the addition of the HexNAc substituent. A nearly complete peptide sequence was deduced from the fragmentation patterns, although four assignments were based only on single fragments of very low abundance. To resolve this uncertainty, a segment of bovine genomic DNA corresponding to the C-terminal AChE sequence was amplified by PCR. DNA sequencing established the 23-amino acid peptide sequence to be FLPKLLSATASEAPCTCSGPAHG, in agreement with the MS data and consistent with results from Edman protein sequencing. Dimerization of AChE polypeptides is mediated by intersubunit disulphide bonding in this C-terminal segment, but the bovine AChE contained two cysteine residues in a …CTC… motif, in contrast with human AChE which contains only a single cysteine in this segment. Although bovine AChE contained no free thiol groups reactive with iodo[14C]acetamide, partial reduction and alkylation with iodo[14C]acetamide revealed that conversion into monomers occurred with an overall incorporation of only one alkyl group per monomer. An identical level of alkylation was observed when dimeric human AChE was converted into monomers by partial reduction. The question of whether the bovine AChE contains one or two intersubunit disulphide linkages is considered.


Biochemistry ◽  
2006 ◽  
Vol 45 (37) ◽  
pp. 11179-11189 ◽  
Author(s):  
Virginia A. Jarymowycz ◽  
Ewa Krupinska ◽  
Martin J. Stone

Science ◽  
1986 ◽  
Vol 232 (4746) ◽  
pp. 68-70 ◽  
Author(s):  
RP Millar ◽  
PJ Wormald ◽  
RC Milton

The human gonadotropin-releasing hormone (GnRH) precursor comprises the GnRH sequence followed by an extension of 59 amino acids. Basic amino acid residues in the carboxyl terminal extension may represent sites of processing to biologically active peptides. A synthetic peptide comprising the first 13 amino acids (H X Asp-Ala-Glu-Asn-Leu-Ile-Asp-Ser-Phe-Gln-Glu-Ile-Val X OH) of the 59-amino acid peptide was found to stimulate the release of gonadotropic hormones from human and baboon anterior pituitary cells in culture. The peptide did not affect thyrotropin or prolactin secretion. A GnRH antagonist did not inhibit gonadotropin stimulation by the peptide, and the peptide did not compete with GnRH for GnRH pituitary receptors, indicating that the action of the peptide is independent of the GnRH receptor. The GnRH precursor contains two distinct peptide sequences capable of stimulating gonadotropin release from human and baboon pituitary cells.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Anthony P. Davenport ◽  
Matthias Kleinz ◽  
Tom Lloyd Williams ◽  
Robyn Macrae ◽  
Janet J. Maguire ◽  
...  

The apelin receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the apelin receptor [68]) responds to apelin, a 36 amino-acid peptide derived initially from bovine stomach. apelin-36, apelin-13 and [Pyr1]apelin-13 are the predominant endogenous ligands which are cleaved from a 77 amino-acid precursor peptide (APLN, Q9ULZ1) by a so far unidentified enzymatic pathway [80]. A second family of peptides discovered independently and named Elabela [11] or Toddler, that has little sequence similarity to apelin, is present, and functional at the apelin receptor in the adult cardiovascular system [87, 67]. Structure-activity relationship Elabela analogues have been described [61].


2003 ◽  
Vol 69 (2) ◽  
pp. 1276-1282 ◽  
Author(s):  
Yo-Shen Chen ◽  
Jeffrey E. Christensen ◽  
Jeffery R. Broadbent ◽  
James L. Steele

ABSTRACT A post-proline endopeptidase (PepO2) was detected in cell extracts from a genomic library of Lactobacillus helveticus CNRZ32 by using the synthetic substrate N-acetyl-β-casein-(f203-209)-ρ-nitroanilide in a coupled reaction with aminopeptidase N. Isolates with activity for this substrate contained plasmids with visually indistinguishable restriction profiles. Nucleotide sequence analysis revealed a 1,947-bp open reading frame, designated pepO2, encoding a putative 71.4-kDa protein. Analysis of the predicted peptide sequence revealed that L. helveticus PepO2 contained the zinc-dependent metalloprotease motif HEXXH and exhibited levels of amino acid sequence similarity of 72, 61, 59, and 53% to L. helveticus PepO, Lactococcus lactis PepO2, L. lactis PepO, and Lactobacillus rhamnosus PepO, respectively. Northern hybridization results indicated that the transcript containing pepO2 was monocistronic. Despite the high degrees of amino acid similarity to PepO proteins from other lactic acid bacteria, the specificity of the L. helveticus PepO2 for post-proline bonds distinguishes it from other PepO-type endopeptidases characterized to date. The specificity for post-proline bonds also suggests that this enzyme may play a central role in the hydrolysis of casein-derived bitter peptides, such as β-casein(f193-209).


Author(s):  
Chi-Ming Wei ◽  
Margaret Hukee ◽  
Christopher G.A. McGregor ◽  
John C. Burnett

C-type natriuretic peptide (CNP) is a newly identified peptide that is structurally related to atrial (ANP) and brain natriuretic peptide (BNP). CNP exists as a 22-amino acid peptide and like ANP and BNP has a 17-amino acid ring formed by a disulfide bond. Unlike these two previously identified cardiac peptides, CNP lacks the COOH-terminal amino acid extension from the ring structure. ANP, BNP and CNP decrease cardiac preload, but unlike ANP and BNP, CNP is not natriuretic. While ANP and BNP have been localized to the heart, recent investigations have failed to detect CNP mRNA in the myocardium although small concentrations of CNP are detectable in the porcine myocardium. While originally localized to the brain, recent investigations have localized CNP to endothelial cells consistent with a paracrine role for CNP in the control of vascular tone. While CNP has been detected in cardiac tissue by radioimmunoassay, no studies have demonstrated CNP localization in normal human heart by immunoelectron microscopy.


Sign in / Sign up

Export Citation Format

Share Document