Increased Viral Yield and Symptom Severity Result from a Single Amino Acid Substitution in the Turnip Yellow Mosaic Virus Movement Protein

1993 ◽  
Vol 6 (3) ◽  
pp. 268 ◽  
Author(s):  
Ching-Hsiu Tsai
2009 ◽  
Vol 22 (9) ◽  
pp. 1151-1159 ◽  
Author(s):  
Jang-Kyun Seo ◽  
Suk-Ha Lee ◽  
Kook-Hyung Kim

In the Soybean mosaic virus (SMV)–soybean pathosystem, three independent genes (Rsv1, Rsv3, and Rsv4) conferring resistance to SMV have been identified. Recently, we constructed infectious cDNA clones of SMV G7H and G5H strains and found that these two strains differ in their ability to infect soybean genotypes possessing different SMV resistance genes despite a difference of only 33 amino acids. In particular, pSMV-G7H induced mosaic symptoms systemically in L29 (Rsv3) and provoked a lethal systemic hypersensitive response (LSHR) in Jinpumkong-2, whereas pSMV-G5H could not infect these soybean genotypes. To identify the responsible pathogenic determinants of SMV, we exploited the differential responses of pSMV-G7H- and pSMV-G5H-derived chimeric viruses and amino acid substitution mutant viruses in several soybean genotypes and demonstrated that cylindrical inclusion (CI) protein is the elicitor of Rsv3-mediated extreme resistance and a pathogenic determinant provoking LSHR in Jinpumkong-2. A single amino acid substitution in CI was found to be responsible for gain or loss of elicitor function of CI. Our finding provides a role for CI as a pathogenic determinant in the SMV–soybean pathosystem, and increases the understanding of the basis of the different disease responses of SMV strains.


2020 ◽  
Vol 110 (1) ◽  
pp. 146-152 ◽  
Author(s):  
H. Chen ◽  
M. Ino ◽  
M. Shimono ◽  
S. G. Wagh ◽  
K. Kobayashi ◽  
...  

Cucumber green mottle mosaic virus (CGMMV), a member of the genus Tobamovirus, is a major threat to economically important cucurbit crops worldwide. An attenuated strain (SH33b) derived from a severe strain (SH) of CGMMV caused a reduction in the viral RNA accumulation and the attenuation of symptoms, and it has been successfully used to protect muskmelon plants against severe strains in Japan. In this study, we compared GFP-induced silencing suppression by the 129K protein and the methyltransferase domain plus intervening region (MTIR) of the 129K protein between the SH and SH33b strains, respectively. As a result, silencing suppression activity (SSA) in the GFP-silenced plants was inhibited efficiently by the MTIR and 129K protein of SH strain, and it coincided with drastically reduced accumulation of GFP-specific small interfering RNAs (siRNAs) but not by that of SH33b strain. Furthermore, analyses of siRNA binding capability (SBC) by the MTIR of 129K protein and 129K protein using electrophoretic mobility shift assay revealed that SBC was found with the MTIR and 129K protein of SH but not with that of SH33b, suggesting that a single amino acid mutation (E to G) in the MTIR is responsible for impaired SSA and SBC of SH33b. These data suggest that a single amino acid substitution in the intervening region of 129K protein of CGMMV resulted in attenuated symptoms by affecting RNA silencing suppression.


2005 ◽  
Vol 79 (2) ◽  
pp. 1215-1222 ◽  
Author(s):  
M. R. Hajimorad ◽  
A. L. Eggenberger ◽  
J. H. Hill

ABSTRACT Rsv1, a single dominant resistance gene in soybean PI 96983 (Rsv1), confers extreme resistance against all known American strains of Soybean mosaic virus (SMV), except G7 and G7d. SMV-G7 provokes a lethal systemic hypersensitive response (LSHR), whereas SMV-G7d, an experimentally evolved variant of SMV-G7, induces systemic mosaic. To identify the elicitor of Rsv1-mediated LSHR, chimeras were constructed by exchanging fragments between the molecularly cloned SMV-G7 (pSMV-G7) and SMV-G7d (pSMV-G7d), and their elicitor functions were assessed on PI 96983 (Rsv1). pSMV-G7-derived chimeras containing only P3 of SMV-G7d lost the elicitor function, while the reciprocal chimera of pSMV-G7d gained the function. The P3 regions of the two viruses differ by six nucleotides, of which two are translationally silent. The four amino acid differences are located at positions 823, 915, 953, and 1112 of the precursor polypeptide. Analyses of the site-directed point mutants of both the viruses revealed that nucleotide substitutions leading to translationally silent mutations as well as reciprocal amino acid substitution at position 915 did not influence the loss or gain of the elicitor function. pSMV-G7-derived mutants with amino acid substitutions at any of the other three positions lost the ability to provoke LSHR but induced SHR instead. Two concomitant amino acid substitutions at positions 823 (V to M) and 953 (K to E) abolished pSMV-G7 elicitor function, provoking Rsv1-mediated SHR. Conversely, pSMV-G7d gained the elicitor function of Rsv1-mediated LSHR by a single amino acid substitution at position 823 (M to V), and mutants with amino acid substitutions at position 953 or 1112 induced SHR instead of mosaic. Taken together, the data suggest that strain-specific P3 of SMV is the elicitor of Rsv1-mediated LSHR.


Sign in / Sign up

Export Citation Format

Share Document