Nrs1, a Repetitive Element Linked to Pisatin Demethylase Genes on a Dispensable Chromosome ofNectria haematococc

1995 ◽  
Vol 8 (4) ◽  
pp. 524 ◽  
Author(s):  
Hong Gi Kim
2002 ◽  
Vol 15 (8) ◽  
pp. 840-846 ◽  
Author(s):  
Deanna L. Funnell ◽  
Hans D. VanEtten

Studies on the wide-host-range fungus Nectria haematococca MP VI have shown a linkage between virulence on pea and five of nine PDA genes that encode the ability to detoxify the pea phytoalexin, pisatin. Most of the PDA genes are on chromosomes of approximately 1.6 megabases (Mb) and two of these genes, PDA1-2 and PDA6-1, have been demonstrated to reside on approximately 1.6-Mb chromosomes that can be lost during meiosis. Prior studies also have shown that the dispensable chromosome carrying PDA6-1 contains a gene (MAK1) necessary for maximum virulence on chickpea. The present study evaluated whether the other approximately 1.6-Mb chromosomes that carry PDA genes also are dispensable, their relationship to each other, and whether they contain genes for pathogenicity on hosts other than pea or chickpea. DNA from the PDA1-1 chromosome (associated with virulence on pea) and the PDA6-1 chromosome (associated with virulence on chickpea) were used to probe blots of contour-clamped homogeneous electric field (CHEF) gels of isolates carrying different PDA genes and genetically related Pda¯ isolates. All of the approximately 1.6-Mb PDA-bearing chromosomes hybridized with both probes, indicating that they share significant similarity. Genetically related Pda¯ progeny lacked chromosomes of approximately 1.6 Mb and there was no significant hybridization of any chromosomes to the PDA1-1 and PDA6-1 chromosome probes. When isolates carrying different PDA genes and related Pda¯ isolates were tested for virulence on carrot and ripe tomato, there was no significant difference in lesion sizes produced by Pda+ and Pda- isolates, indicating that genes for pathogenicity on these hosts are not on the PDA-containing chromosomes. These results support the hypothesis that the chromosomes carrying PDA genes are dispensable and carry host-specific virulence genes while genes for pathogenicity on other hosts are carried on other chromosomes.


2004 ◽  
Vol 21 (4) ◽  
pp. 705-715 ◽  
Author(s):  
Takeshi Sasaki ◽  
Kazuhiko Takahashi ◽  
Masato Nikaido ◽  
Seiko Miura ◽  
Yuichirou Yasukawa ◽  
...  

2014 ◽  
Vol 25 (18) ◽  
pp. 2866-2881 ◽  
Author(s):  
Corey L. Smith ◽  
Timothy D. Matheson ◽  
Daniel J. Trombly ◽  
Xiaoming Sun ◽  
Eric Campeau ◽  
...  

Chromatin assembly factor-1 (CAF-1) is a three-subunit protein complex conserved throughout eukaryotes that deposits histones during DNA synthesis. Here we present a novel role for the human p150 subunit in regulating nucleolar macromolecular interactions. Acute depletion of p150 causes redistribution of multiple nucleolar proteins and reduces nucleolar association with several repetitive element–containing loci. Of note, a point mutation in a SUMO-interacting motif (SIM) within p150 abolishes nucleolar associations, whereas PCNA or HP1 interaction sites within p150 are not required for these interactions. In addition, acute depletion of SUMO-2 or the SUMO E2 ligase Ubc9 reduces α-satellite DNA association with nucleoli. The nucleolar functions of p150 are separable from its interactions with the other subunits of the CAF-1 complex because an N-terminal fragment of p150 (p150N) that cannot interact with other CAF-1 subunits is sufficient for maintaining nucleolar chromosome and protein associations. Therefore these data define novel functions for a separable domain of the p150 protein, regulating protein and DNA interactions at the nucleolus.


1994 ◽  
Vol 14 (5) ◽  
pp. 3074-3084
Author(s):  
G Schumann ◽  
I Zündorf ◽  
J Hofmann ◽  
R Marschalek ◽  
T Dingermann

The Dictyostelium discoideum NC4 genome harbors approximately 150 individual copies of a retrotransposable element called the Dictyostelium repetitive element (DRE). This element contains nonidentical terminal repeats (TRs) consisting of conserved building blocks A and B in the left TR and B and C in the right TR. Seven different-sized classes of RNA transcripts from these elements were resolved by Northern (RNA) blot analysis, but their combined abundance was very low. When D. discoideum cells were grown in the presence of the respiratory chain blocker antimycin A, steady-state concentrations of these RNA species increased 10- to 20-fold. The D. discoideum genome contains two DRE subtypes, the full-length 5.7-kb DREa and the internally deleted 2.4-kb DREb. Both subtypes are transcribed, as confirmed by analysis of cloned cDNA. Primary transcripts from the sense strand originate at nucleotide +1 and terminate at two dominant sites, located 21 or 28 nucleotides upstream from the 3' end of the elements. The activity of a reasonably strong polymerase II promoter in the 5'-terminal A module is slightly upregulated by the tRNA gene located 50 +/- 4 nucleotides upstream and drastically reduced by the adjacent B module of the DRE. Transcripts from the opposite DNA strand (complementary-sense transcripts) were also detected, directed by an internally located polymerase II promoter residing within the C module. This latter transcription was initiated at multiple sites within the oligo(dA12) stretch which terminates DREs.


2009 ◽  
Vol 75 (21) ◽  
pp. 6764-6776 ◽  
Author(s):  
David P. Stephenson ◽  
Robert J. Moore ◽  
Gwen E. Allison

ABSTRACT Three repetitive-element PCR techniques were evaluated for the ability to type strains of Lactobacillus species commonly identified in the chicken gastrointestinal tract. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) produced species- and strain-specific profiles for Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri isolates. The technique typed strains within these species equally as well as pulsed-field gel electrophoresis. DNA concentration and quality did not affect the ERIC-PCR profiles, indicating that this method, unlike other high-resolution methods, can be adapted to high-throughput analysis of isolates. Subsequently, ERIC-PCR was used to type Lactobacillus species diversity of a large collection of isolates derived from chickens grown under commercial and necrotic enteritis disease induction conditions. This study has illustrated, for the first time, that there is great strain diversity within each Lactobacillus species present and has revealed that chickens raised under commercial conditions harbor greater species and strain diversity than chickens raised under necrotic enteritis disease induction conditions.


Sign in / Sign up

Export Citation Format

Share Document